Potential evidence of peripheral learning and memory in the arms of dwarf cuttlefish, Sepia bandensis.
CREB
Cuttlefish
Learning
Memory
Sepia
Journal
Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
ISSN: 1432-1351
Titre abrégé: J Comp Physiol A Neuroethol Sens Neural Behav Physiol
Pays: Germany
ID NLM: 101141792
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
22
07
2020
accepted:
08
06
2021
revised:
26
05
2021
pubmed:
15
6
2021
medline:
1
2
2022
entrez:
14
6
2021
Statut:
ppublish
Résumé
CREB (cAMP response element-binding) transcription factors are conserved markers of memory formation in the brain and peripheral circuits. We provide immunohistochemical evidence of CREB phosphorylation in the dwarf cuttlefish, Sepia bandensis, following the inaccessible prey (IP) memory experiment. During the IP experiment, cuttlefish are shown prey enclosed in a transparent tube, and tentacle strikes against the tube decrease over time as the cuttlefish learns the prey is inaccessible. The cues driving IP learning are unclear but may include sensory inputs from arms touching the tube. The neural activity marker, anti-phospho-CREB (anti-pCREB) was used to determine whether IP training stimulated cuttlefish arm sensory neurons. pCREB immunoreactivity occurred along the oral surface of the arms, including the suckers and epithelial folds surrounding the suckers. pCREB increased in the epithelial folds and suckers of trained cuttlefish. We found differential pCREB immunoreactivity along the distal-proximal axis of trained arms, with pCREB concentrated distally. Unequal CREB phosphorylation occurred among the 4 trained arm pairs, with arm pairs 1 and 2 containing more pCREB. The resulting patterns of pCREB in trained arms suggest that the arms obtain cues that may be salient for learning and memory of the IP experiment.
Identifiants
pubmed: 34121131
doi: 10.1007/s00359-021-01499-x
pii: 10.1007/s00359-021-01499-x
doi:
Substances chimiques
Cyclic AMP Response Element-Binding Protein
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
575-594Références
Adamo SA, Ehgoetz K, Sangster C, Whitehorne I (2006) Signaling to the enemy? Body pattern expression and its response to external cues during hunting in the cuttlefish Sepia officinalis (Cephalopoda). Biol Bull 210:192–200. https://doi.org/10.2307/4134557
doi: 10.2307/4134557
pubmed: 16801494
Agin V, Dickel L, Chichery R, Chichery MP (1998) Evidence for a specific short-term memory in the cuttlefish, Sepia. Behav Processes 43:329–334. https://doi.org/10.1016/S0376-6357(98)00019-9
doi: 10.1016/S0376-6357(98)00019-9
pubmed: 24896499
Agin V, Chichery R, Maubert E, Chichery MP (2003) Time-dependent effects of cycloheximide on long-term memory in the cuttlefish. Pharmacol Biochem Behav 75:141–146. https://doi.org/10.1016/S0091-3057(03)00041-8
doi: 10.1016/S0091-3057(03)00041-8
pubmed: 12759122
Agin V, Chichery R, Dickel L, Chichery MP (2006) The “prawn-in-the-tube” procedure in the cuttlefish: Habituation or passive avoidance learning? Learn Mem 13:97–101. https://doi.org/10.1101/lm.90106
doi: 10.1101/lm.90106
pubmed: 16418437
pmcid: 1360137
Alves C, Chichery R, Boal JG, Dickel L (2007) Orientation in the cuttlefish Sepia officinalis: response versus place learning. Anim Cogn 10:29–36. https://doi.org/10.1007/s10071-006-0027-6
doi: 10.1007/s10071-006-0027-6
pubmed: 16794852
Bellanger C, Dauphin F, Chichery M-P, Chichery R (2003) Changes in cholinergic enzyme activities in the cuttlefish brain during memory formation. Physiol Behav 79:749–756. https://doi.org/10.1016/s0031-9384(03)00188-4
doi: 10.1016/s0031-9384(03)00188-4
pubmed: 12954418
Bellier JP, Xie Y, Farouk SM, Sakaue Y, Tooyama I, Kimura H (2017) Immunohistochemical and biochemical evidence for the presence of serotonin-containing neurons and nerve fibers in the octopus arm. Brain Struct Funct 222:3043–3061. https://doi.org/10.1007/s00429-017-1385-3
doi: 10.1007/s00429-017-1385-3
pubmed: 28247020
Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240. https://doi.org/10.1016/j.tins.2010.02.001
doi: 10.1016/j.tins.2010.02.001
pubmed: 20223527
Billard P, Schnell AK, Clayton NS, Jozet-Alves C (2020) Cuttlefish show flexible and future-dependent foraging cognition. Biol Lett 16:1–5. https://doi.org/10.1098/rsbl.2019.0743
doi: 10.1098/rsbl.2019.0743
Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W, Schütz G (2002) Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol 22:1919–1925. https://doi.org/10.1128/mcb.22.6.1919-1925.2002
doi: 10.1128/mcb.22.6.1919-1925.2002
pubmed: 11865068
pmcid: 135604
Bowers J, Nimi T, Wilson J, Wagner S, Amarie D, Sittaramane V (2020) Evidence of learning and memory in the juvenile dwarf cuttlefish Sepia bandensis. Learn Behav 48:420–431. https://doi.org/10.3758/s13420-020-00427-4
doi: 10.3758/s13420-020-00427-4
pubmed: 32500485
Boycott BB (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc R Soc Lond B 153:503–534. https://doi.org/10.1098/rspb.1961.0015
doi: 10.1098/rspb.1961.0015
Boycott BB, Young JZ (1955) A memory system in Octopus vulgaris Lamarck. Proc R Soc Lond B 143:449–480. https://doi.org/10.1098/rspb.1955.0024
doi: 10.1098/rspb.1955.0024
pubmed: 14371617
Brightwell JJ, Smith CA, Neve RL, Colombo PJ (2007) Long-term memory for place learning is facilitated by expression of cAMP response element-binding protein in the dorsal hippocampus. Learn Mem 14:195–199. https://doi.org/10.1101/lm.395407
doi: 10.1101/lm.395407
pubmed: 17351144
Brown ER, Piscopo S (2013) Synaptic plasticity in cephalopods; more than just learning and memory? Invert Neurosci 13:35–44. https://doi.org/10.1007/s10158-013-0150-4
doi: 10.1007/s10158-013-0150-4
pubmed: 23549756
Byrne RA, Kuba MJ, Meisel DV, Griebel U, Mather JA (2006) Does Octopus vulgaris have preferred arms? J Comp Psychol 120:198–204. https://doi.org/10.1037/0735-7036.120.3.198
doi: 10.1037/0735-7036.120.3.198
pubmed: 16893257
Cartron L, Darmaillacq AS, Dickel L (2013) The “prawn-in-the-tube” procedure: what do cuttlefish learn and memorize? Behav Brain Res 240:29–32. https://doi.org/10.1016/j.bbr.2012.11.010
doi: 10.1016/j.bbr.2012.11.010
pubmed: 23178535
Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, Bailey CH, Kandel ER (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99:221–237. https://doi.org/10.1016/S0092-8674(00)81653-0
doi: 10.1016/S0092-8674(00)81653-0
pubmed: 10535740
Chichery MP, Chichery R (1987) The anterior basal lobe and control of prey-capture in the cuttlefish (Sepia officinalis). Physiol Behav 40:329–336. https://doi.org/10.1016/0031-9384(87)90055-2
doi: 10.1016/0031-9384(87)90055-2
pubmed: 3659149
Chichery MP, Chichery R (1988) Manipulative motor activity of the cuttlefish Sepia officinalis during prey-capture. Behav Processes 17:45–56. https://doi.org/10.1016/0376-6357(88)90049-6
doi: 10.1016/0376-6357(88)90049-6
pubmed: 24896909
Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89–101. https://doi.org/10.1016/S0896-6273(00)80026-4
doi: 10.1016/S0896-6273(00)80026-4
pubmed: 8562094
Deisseroth K, Heist EK, Tsien RW (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 12:198–202. https://doi.org/10.1038/32448
Di Poi C, Darmaillacq AS, Dickel L, Boulouard M, Bellanger C (2013) Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis. Aquat Toxicol 132–133:84–91. https://doi.org/10.1016/j.aquatox.2013.02.004
doi: 10.1016/j.aquatox.2013.02.004
pubmed: 23474317
Dickel L, Chichery MP, Chichery R (1998) Time differences in the emergence of short- and long-term memory during post-embryonic development in the cuttlefish, Sepia. Behav Processes 44:81–86. https://doi.org/10.1016/S0376-6357(98)00024-2
doi: 10.1016/S0376-6357(98)00024-2
pubmed: 24896730
Dickel L, Chichery MP, Chichery R (2001) Increase of learning abilities and maturation of the vertical lobe complex during postembryonic development in the cuttlefish, Sepia. Dev Psychobiol 39:92–98. https://doi.org/10.1002/dev.1033
doi: 10.1002/dev.1033
pubmed: 11568879
Dickel L, Darmaillacq AS, Jozet-Alves C, Bellanger C (2013) Learning, memory, and brain plasticity in cuttlefish (Sepia officinalis). In: Menzel R, Benjamin PR (eds) Handbook of behavioral neuroscience. Elsevier, Amsterdam, pp 318–333
Efimova OI, Ierusalimskii VN, Anokhin KV, Balaban PM (2007) Immunohistochemical detection of the activation of CREB and c-Fos transcription factors in the nervous system of the terrestrial snail induced by pentylenetetrazole. Neurosci Behav Physiol 37:853–856. https://doi.org/10.1007/s11055-007-0092-6
doi: 10.1007/s11055-007-0092-6
pubmed: 17955377
Eisenhardt D, Friedrich A, Stollhoff N, Müller U, Kress H, Menzel R (2003) The AmCREB gene is an ortholog of the mammalian CREB/CREM family of transcription factors and encodes several splice variants in the honeybee brain. Insect Mol Biol 12:373–382. https://doi.org/10.1046/j.1365-2583.2003.00421.x
doi: 10.1046/j.1365-2583.2003.00421.x
pubmed: 12864917
Fain GL, Matthews HR, Cornwall MC, Koutalos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151. https://doi.org/10.1152/physrev.2001.81.1.117
doi: 10.1152/physrev.2001.81.1.117
pubmed: 11152756
Fiorito G, Affuso A, Basil J et al (2015) Guidelines for the care and welfare of cephalopods in research –A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab Anim 49:1–90. https://doi.org/10.1177/0023677215580006
doi: 10.1177/0023677215580006
pubmed: 26354955
Freeman FM, Rose SPR (1999) Expression of Fos and Jun proteins following passive avoidance training in the day-old chick. Learn Mem 6:389–397. https://doi.org/10.1101/lm.6.4.389
doi: 10.1101/lm.6.4.389
pubmed: 10509709
pmcid: 311293
Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV (2018) Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 12:79. https://doi.org/10.3389/fnbeh.2018.00079
doi: 10.3389/fnbeh.2018.00079
pubmed: 29755331
pmcid: 5932360
Gleadall IG (2013) The effects of prospective anaesthetic substances on cephalopods: summary of original data and a brief review of studies over the last two decades. J Exp Mar Bio Ecol 447:23–30. https://doi.org/10.1016/j.jembe.2013.02.008
doi: 10.1016/j.jembe.2013.02.008
Grasso FW (2008) Octopus sucker-arm coordination in grasping and manipulation. Am Malacol Bull 24:13–23. https://doi.org/10.4003/0740-2783-24.1.13
doi: 10.4003/0740-2783-24.1.13
Grasso FW (2014) The octopus with two brains: How are distributed and central representations integrated in the octopus central nervous system? In: Darmaillacq AS, Dickel L, Mather J (eds) Cephalopod cognition. Cambridge University Press, Cambridge, pp 94–122
doi: 10.1017/CBO9781139058964.008
Grasso F, Wells M (2013) Tactile sensing in the octopus. Scholarpedia 8:7165. https://doi.org/10.4249/scholarpedia.7165
doi: 10.4249/scholarpedia.7165
Graziadei P (1964) Receptors in the sucker of the cuttlefish. Nature 203:384–386. https://doi.org/10.1038/203384a0
doi: 10.1038/203384a0
pubmed: 14197377
Graziadei P (1965) Muscle receptors in cephalopods. Proc R Soc Lond B 161:392–402. https://doi.org/10.1098/rspb.1965.0011
doi: 10.1098/rspb.1965.0011
Graziadei P (1971) The nervous system of the arm. In: Young JZ (ed) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford, pp 45–61
Graziadei PPC, Gagne HT (1976) Sensory innervation in the rim of the octopus sucker. J Morphol 150(3):639–679. https://doi.org/10.1002/jmor.1051500304
doi: 10.1002/jmor.1051500304
pubmed: 1003488
Guo CH, Senzel A, Li K, Feng ZP (2010) De novo protein synthesis of syntaxin-1 and dynamin-1 in long-term memory formation requires creb1 gene transcription in Lymnaea stagnalis. Behav Genet 40:680–693. https://doi.org/10.1007/s10519-010-9374-9
doi: 10.1007/s10519-010-9374-9
pubmed: 20563839
Gutfreund Y, Matzner H, Flash T, Hochner B (2006) Patterns of motor activity in the isolated nerve cord of the octopus arm. Biol Bull 211:212–222. https://doi.org/10.2307/4134544
doi: 10.2307/4134544
pubmed: 17179381
Hanlon RT, Messenger JB (2018) Cephalopod behaviour. Cambridge University Press, Cambridge
doi: 10.1017/9780511843600
Hawk JD, Calvo AC, Liu P, Almoril-Porras A, Aljobeh A, Torruella-Suárez ML, Ren I, Cook N, Greenwood J, Luo L, Wang ZW, Samuel ADT, Colón-Ramos DA (2018) Integration of plasticity mechanisms within a single sensory neuron of C. elegans actuates a memory. Neuron 97:356-367.e4. https://doi.org/10.1016/j.neuron.2017.12.027
doi: 10.1016/j.neuron.2017.12.027
pubmed: 29307713
pmcid: 5806692
Hochner B, Brown ER, Langella M, Shomrat T, Fiorito G (2003) A learning and memory area in the Octopus brain manifests a vertebrate-like long-term potentiation. J Neurophysiol 90:3547–3554. https://doi.org/10.1152/jn.00645.2003
doi: 10.1152/jn.00645.2003
pubmed: 12917390
Huang YH, Lin Y, Brown TE, Han MH, Saal DB, Neve RL, Zukin RS, Sorg BA, Nestler EJ, Malenka RC, Dong Y (2008) CREB modulates the functional output of nucleus accumbens neurons: a critical role of N-methyl-D-aspartate glutamate receptor (NMDAR) receptors. J Biol Chem 283:2751–2760. https://doi.org/10.1074/jbc.M706578200
doi: 10.1074/jbc.M706578200
pubmed: 18055458
Izquierdo LA, Barros DM, Vianna MRM, Coitinho A, deDavid e Silva T, Choi H, Moletta B, Medina JH, Izquierdo I (2002) Molecular pharmacological dissection of short- and long-term memory. Cell Mol Neurobiol 22:269–287. https://doi.org/10.1023/A:1020715800956
doi: 10.1023/A:1020715800956
pubmed: 12469870
Jereb P, Roper CFE (2005) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1 chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes. FAO, Rome
Jozet-Alves C, Bertin M, Clayton NS (2013) Evidence of episodic-like memory in cuttlefish. Curr Biol 23:R1033–R1035. https://doi.org/10.1016/j.cub.2013.10.021
doi: 10.1016/j.cub.2013.10.021
pubmed: 24309275
Karson MA, Boal JG, Hanlon RT (2003) Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). J Comp Psychol 117:149–155. https://doi.org/10.1037/0735-7036.117.2.149
doi: 10.1037/0735-7036.117.2.149
pubmed: 12856785
Kier WM (2016) The musculature of coleoid cephalopod arms and tentacles. Front Cell Dev Biol 4:10. https://doi.org/10.3389/fcell.2016.00010
doi: 10.3389/fcell.2016.00010
pubmed: 26925401
pmcid: 4757648
Kim J, Kwon JT, Kim HS, Han JH (2013) CREB and neuronal selection for memory trace. Front Neural Circuits 7:44. https://doi.org/10.3389/fncir.2013.00044
doi: 10.3389/fncir.2013.00044
pubmed: 23519079
pmcid: 3604628
Kitagawa H, Sugo N, Morimatsu M, Arai Y, Yanagida T, Yamamoto N (2017) Activity-dependent dynamics of the transcription factor of cAMP-response element binding protein in cortical neurons revealed by single-molecule imaging. J Neurosci 37:1–10. https://doi.org/10.1523/jneurosci.0943-16.2016
doi: 10.1523/jneurosci.0943-16.2016
pubmed: 28053025
pmcid: 6705672
Kovach SJ, Price JA, Shaw CM, Theodorakis NG, McKillop IH (2006) Role of cyclic-AMP responsive element binding (CREB) proteins in cell proliferation in a rat model of hepatocellular carcinoma. J Cell Physiol 206:411–419. https://doi.org/10.1002/jcp.20474
doi: 10.1002/jcp.20474
pubmed: 16110470
Landeira BS, Santana TT, Araujo JA, Tabet EI, Tannous BA, Schroeder T, Costa MR (2018) Activity-independent effects of CREB on neuronal survival and differentiation during mouse cerebral cortex development. Cereb Cortex 28:537–548. https://doi.org/10.1093/cercor/bhw387
doi: 10.1093/cercor/bhw387
Lee J-A, Lee S-H, Lee C, Chang D-J, Lee Y, Kim H, Cheang Y-H, Ko H-G, Lee Y-S, Jun H, Bartsch D, Kander ER, Kaang B-K (2006) PKA-activated ApAF-ApC/EBP heterodimer is a a key downstream effector of ApCREB and is necessary and sufficient for the consolidation of long-term facilation. J Cell Biol 174:827–838. https://doi.org/10.1083/jcb.200512066
doi: 10.1083/jcb.200512066
pubmed: 16966424
pmcid: 2064337
Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, Firozi P, Woo SH, Ranade S, Patapoutian A, Lumpkin EA (2014) Epidermal merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–621. https://doi.org/10.1038/nature13250
doi: 10.1038/nature13250
pubmed: 24717432
pmcid: 4097312
Mather JA (1991) Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca, Cephalopoda). J Zool 224:27–39. https://doi.org/10.1111/j.1469-7998.1991.tb04786.x
doi: 10.1111/j.1469-7998.1991.tb04786.x
Mather JA, Dickel L (2017) Cephalopod complex cognition. Curr Opin Behav Sci 16:131–137. https://doi.org/10.1016/j.cobeha.2017.06.008
doi: 10.1016/j.cobeha.2017.06.008
Mather JA, Kuba MJ (2013) The cephalopod specialties: complex nervous system, learning, and cognition. Can J Zool 91:431–449. https://doi.org/10.1139/cjz-2013-0009
doi: 10.1139/cjz-2013-0009
Matsumoto Y, Matsumoto CS, Mizunami M (2018) Signaling pathways for long-term memory formation in the cricket. Front Psychol 9:1014. https://doi.org/10.3389/fpsyg.2018.01014
doi: 10.3389/fpsyg.2018.01014
pubmed: 29988479
pmcid: 6024501
McGann JP (2015) Associative learning and sensory neuroplasticity: how does it happen and what is it good for? Learn Mem 22:567–576. https://doi.org/10.1101/lm.039636.115
doi: 10.1101/lm.039636.115
pubmed: 26472647
pmcid: 4749728
Messenger JB (1968) The visual attack of the cuttlefish, Sepia officinalis. Anim Behav 16:342–357. https://doi.org/10.2331/suisan.63.145
doi: 10.2331/suisan.63.145
pubmed: 5691850
Messenger JB (1971) Two-stage recovery of a response in Sepia. Nature 232:202–203. https://doi.org/10.1038/232202a0
doi: 10.1038/232202a0
pubmed: 16062912
Messenger JB (1973) Learning in the cuttlefish, Sepia. Anim Behav 21:801–826. https://doi.org/10.1016/S0003-3472(73)80107-1
doi: 10.1016/S0003-3472(73)80107-1
Molliver DC, Cook SP, Carlsten JA, Wright DE, McCleskey EW (2002) ATP and UTP excite sensory neurons and induce CREB phosphorylation through the metabotropic receptor, P2Y2. Eur J Neurosci 16:1850–1860. https://doi.org/10.1046/j.1460-9568.2002.02253.x
doi: 10.1046/j.1460-9568.2002.02253.x
pubmed: 12453048
Moon C, Sung YK, Reddy R, Ronnett GV (1999) Odorants induce the phosphorylation of the cAMP response element binding protein in olfactory receptor neurons. Proc Natl Acad Sci USA 96:14605–14610. https://doi.org/10.1073/pnas.96.25.14605
doi: 10.1073/pnas.96.25.14605
pubmed: 10588752
pmcid: 24483
Moroz LL (2011) Aplysia. Curr Biol 21:R60–R61. https://doi.org/10.1016/j.cub.2010.11.028
doi: 10.1016/j.cub.2010.11.028
pubmed: 21256433
pmcid: 4024469
Müller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27:159–168. https://doi.org/10.1016/S0896-6273(00)00017-9
doi: 10.1016/S0896-6273(00)00017-9
pubmed: 10939339
Munger B (1977) Neural-epithelial interactions in sensory receptors. J Invest Dermatol 69:27–40. https://doi.org/10.1111/1523-1747.ep12497861
doi: 10.1111/1523-1747.ep12497861
pubmed: 326993
Nödl MT, Kerbl A, Walzl MG, Müller GB, Gert de Couet H (2016) The cephalopod arm crown: appendage formation and differentiation in the Hawaiian bobtail squid Euprymna scolopes. Front Zool 13:44. https://doi.org/10.1186/s12983-016-0175-8
doi: 10.1186/s12983-016-0175-8
pubmed: 27708680
pmcid: 5041568
Okamoto K, Yasumuro H, Mori A, Ikeda Y (2017) Unique arm-flapping behavior of the pharaoh cuttlefish, Sepia pharaonis: putative mimicry of a hermit crab. J Ethol 35:307–311. https://doi.org/10.1007/s10164-017-0519-7
doi: 10.1007/s10164-017-0519-7
pubmed: 29225406
pmcid: 5711991
Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307. https://doi.org/10.1111/j.1469-185x.1972.tb00975.x
doi: 10.1111/j.1469-185x.1972.tb00975.x
Pereira C (2015) Short-term and long-term learning and memory in snails (Achatina fulica). J Zool Stud 2:1–12
Purdy JE, Roberts AC, Garcia CA (1999) Sign tracking in cuttlefish (Sepia officinalis). J Comp Psychol 113:443–449. https://doi.org/10.1037/0735-7036.113.4.443
doi: 10.1037/0735-7036.113.4.443
pubmed: 10608568
Purdy JE, Dixon D, Estrada A, Peters A, Riedlinger E, Suarez R (2006) Prawn-in-a-tube procedure: habituation or associative learning in cuttlefish? J Gen Psychol 133:131–152. https://doi.org/10.3200/GENP.133.2.131-152
doi: 10.3200/GENP.133.2.131-152
pubmed: 16705907
Ribeiro MJ, Serfozo Z, Papp A, Kemenes I, O’Shea M, Yin JCP, Benjamin PR, Kemenes G (2003) Cyclic AMP response element-binding (CREB)-like proteins in a molluscan brain: cellular localization and learning-induced phosphorylation. Eur J Neurosci 18:1223–1234. https://doi.org/10.1046/j.1460-9568.2003.02856.x
doi: 10.1046/j.1460-9568.2003.02856.x
pubmed: 12956721
Sakaue Y, Bellier JP, Kimura S, D’Este L, Takeuchi Y, Kimura H (2014) Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm. Brain Struct Funct 219:323–341. https://doi.org/10.1007/s00429-012-0502-6
doi: 10.1007/s00429-012-0502-6
pubmed: 23354679
Sampaio E, Ramos CS, Bernardino BLM, Bleunven M, Augustin ML, Moura E, Lopes VM, Rosa R (2020) Neurally underdeveloped cuttlefish newborns exhibit social learning. Anim Cogn 24:23–32. https://doi.org/10.1007/s10071-020-01411-1
doi: 10.1007/s10071-020-01411-1
pubmed: 32651650
Sanders FK, Young JZ (1940) Learning and other functions of the higher nervous centres of Sepia. J Neurophysiol 3:501–526. https://doi.org/10.1152/jn.1940.3.6.501
doi: 10.1152/jn.1940.3.6.501
Scata G, Jozet-Alves C, Thomasse C, Josef N, Shashar N (2016) Spatial learning in the cuttlefish Sepia officinalis: preference for vertical over horizontal information. J Exp Biol 219:2928–2933. https://doi.org/10.1242/jeb.129080
doi: 10.1242/jeb.129080
pubmed: 27655826
Shigeno S, Andrews PLR, Ponte G, Fiorito G (2018) Cephalopod brains: an overview of current knowledge to facilitate comparison with vertebrates. Front Physiol 9:952. https://doi.org/10.3389/fphys.2018.00952
doi: 10.3389/fphys.2018.00952
pubmed: 30079030
pmcid: 6062618
Shinzato S, Yasumuro H, Ikeda Y (2018) Visual stimuli for the induction of hunting behavior in cuttlefish Sepia pharaonis. Biol Bull 234:106–115. https://doi.org/10.1086/697522
doi: 10.1086/697522
pubmed: 29856674
Shomrat T, Turchetti-Maia AL, Stern-Mentch N, Basil JA, Hochner B (2015) The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201:947–956. https://doi.org/10.1007/s00359-015-1023-6
doi: 10.1007/s00359-015-1023-6
pubmed: 26113381
Sirakov M, Zarrella I, Borra M, Rizzo F, Biffali E, Arnone MI, Fiorito G (2009) Selection and validation of a set of reliable reference genes for quantitative RT-PCR studies in the brain of the Cephalopod Mollusc Octopus vulgaris. BMC Mol Biol 10:70. https://doi.org/10.1186/1471-2199-10-70
doi: 10.1186/1471-2199-10-70
pubmed: 19602224
pmcid: 2722649
Sumbre G, Gutfreund Y, Fiorito G, Flash T, Hochner B (2001) Control of Octopus arm extension by a peripheral motor program. Science 293:1845–1848. https://doi.org/10.1126/science.1060976
doi: 10.1126/science.1060976
pubmed: 11546877
Turchetti-Maia A, Shomrat T, Hochner B (2019) The vertical lobe of cephalopods-a brain structure ideal for exploring the mechanisms of complex forms of learning and memory. In: Byrne JH (ed) The Oxford handbook of invertebrate neurobiology. Oxford University Press, New York, pp 558–574
Van Den Berg M, Verbaarschot P, Hontelez S, Vet LEM, Dicke M, Smid HM (2010) CREB expression in the brains of two closely related parasitic wasp species that differ in long-term memory formation. Insect Mol Biol 19:367–379. https://doi.org/10.1111/j.1365-2583.2010.00997.x
doi: 10.1111/j.1365-2583.2010.00997.x
pubmed: 20236366
Van Leeuwen JL, Kier WM (1997) Functional design of tentacles in squid: linking sarcomere ultrastructure to gross morphological dynamics. Philos Trans R Soc Lond B Biol Sci 352:551–571. https://doi.org/10.1098/rstb.1997.0038
doi: 10.1098/rstb.1997.0038
pmcid: 1691950
Villanueva R, Perricone V, Fiorito G (2017) Cephalopods as predators: a short journey among behavioral flexibilities, adaptions, and feeding habits. Front Physiol 8:598. https://doi.org/10.3389/fphys.2017.00598
doi: 10.3389/fphys.2017.00598
pubmed: 28861006
pmcid: 5563153
Warnke KM, Kaiser R, Hasselmann M (2012) First observations of a snail-like body pattern in juvenile Sepia bandensis (Cephalopoda: Sepiidae). A note. Neues Jahrb Fur Geol Und Palaontologie - Abhandlungen 266:51–57. https://doi.org/10.1127/0077-7749/2012/0259
doi: 10.1127/0077-7749/2012/0259
Wells MJ (1958) Factors affecting reactions to mysis by newly hatched Sepia. Behaviour 13:96–111. https://doi.org/10.1163/156853958X00055
doi: 10.1163/156853958X00055
Wells MJ (1964) Tactile discrimination of shape by octopus. Q J Exp Psychol 16:156–162. https://doi.org/10.1080/17470216408416360
doi: 10.1080/17470216408416360
Wells MJ (1978) Octopus: physiology and behaviour of an advanced invertebrate. Springer, Netherlands
doi: 10.1007/978-94-017-2468-5
Wells MJ, Wells J (1957) The function of the brain of octopus in tactile discrimination. J Exp Biol 34:131–142. https://doi.org/10.1242/jeb.34.1.131
doi: 10.1242/jeb.34.1.131
Wen AY, Sakamoto KM, Miller LS (2010) The role of the transcription factor CREB in immune function. J Immunol 185:6413–6419. https://doi.org/10.4049/jimmunol.1001829
doi: 10.4049/jimmunol.1001829
pubmed: 21084670
Woo SH, Lumpkin EA, Patapoutian A (2015) Merkel cells and neurons keep in touch. Trends Cell Biol 25:74–81. https://doi.org/10.1016/j.tcb.2014.10.003
doi: 10.1016/j.tcb.2014.10.003
pubmed: 25480024
Yin JCP, Del Vecchio M, Zhou H, Tully T (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in drosophila. Cell 81:107–115. https://doi.org/10.1016/0092-8674(95)90375-5
doi: 10.1016/0092-8674(95)90375-5
pubmed: 7720066
Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford
Young JZ (1983) The distributed tactile memory system of Octopus. Proc R Soc Lond B 218:135–176. https://doi.org/10.1098/rspb.1983.0032
doi: 10.1098/rspb.1983.0032
Yuan F, Xiong G, Cohen NA, Cohen AS (2017) Optimized protocol of methanol treatment for immunofluorescent staining in fixed brain slices. Appl Immunohistochem Mol Morphol 25:221–224. https://doi.org/10.1097/PAI.0000000000000293
doi: 10.1097/PAI.0000000000000293
pubmed: 26509907
pmcid: 4848166
Zarrella I (2012) Testing changes in gene expression profiles in Octopus vulgaris (Mollusca Cephalopoda). Doctoral dissertation, The Open University.
Zepeda EA, Veline RJ, Crook RJ (2017) Rapid associative learning and stable long-term memory in the squid Euprymna scolopes. Biol Bull 232:212–218. https://doi.org/10.1086/693461
doi: 10.1086/693461
pubmed: 28898600
Zhang L, Jin C, Lu X, Yang J, Wu S, Liu Q, Chen R, Bai C, Zhang D, Zheng L, Du Y, Cai Y (2014) Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology 323:95–108. https://doi.org/10.1016/j.tox.2014.06.011
doi: 10.1016/j.tox.2014.06.011
pubmed: 24973631
Zullo L, Eichenstein H, Maiole F, Hochner B (2019) Motor control pathways in the nervous system of Octopus vulgaris arm. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 205:271–279. https://doi.org/10.1007/s00359-019-01332-6
doi: 10.1007/s00359-019-01332-6
pubmed: 30919046
pmcid: 6478645