Advancing therapy for osteosarcoma.
Journal
Nature reviews. Clinical oncology
ISSN: 1759-4782
Titre abrégé: Nat Rev Clin Oncol
Pays: England
ID NLM: 101500077
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
accepted:
28
04
2021
pubmed:
17
6
2021
medline:
7
10
2021
entrez:
16
6
2021
Statut:
ppublish
Résumé
Improving the survival of patients with osteosarcoma has long proved challenging, although the treatment of this disease is on the precipice of advancement. The increasing feasibility of molecular profiling together with the creation of both robust model systems and large, well-annotated tissue banks has led to an increased understanding of osteosarcoma biology. The historical invariability of survival outcomes and the limited number of agents known to be active in the treatment of this disease facilitate clinical trials designed to identify efficacious novel therapies using small cohorts of patients. In addition, trial designs will increasingly consider the genetic background of the tumour through biomarker-based patient selection, thereby enriching for clinical activity. Indeed, osteosarcoma cells are known to express a number of surface proteins that might be of therapeutic relevance, including B7-H3, GD2 and HER2, which can be targeted using antibody-drug conjugates and/or adoptive cell therapies. In addition, immune-checkpoint inhibition might augment the latter approach by helping to overcome the immunosuppressive tumour microenvironment. In this Review, we provide a brief overview of current osteosarcoma therapy before focusing on the biological insights from the molecular profiling and preclinical modelling studies that have opened new therapeutic opportunities in this disease.
Identifiants
pubmed: 34131316
doi: 10.1038/s41571-021-00519-8
pii: 10.1038/s41571-021-00519-8
doi:
Substances chimiques
Antibodies, Monoclonal
0
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
609-624Informations de copyright
© 2021. Springer Nature Limited.
Références
Mirabello, L., Troisi, R. J. & Savage, S. A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115, 1531–1543 (2009).
pubmed: 19197972
doi: 10.1002/cncr.24121
pmcid: 19197972
Ottaviani, G. & Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res. 152, 3–13 (2009).
pubmed: 20213383
doi: 10.1007/978-1-4419-0284-9_1
pmcid: 20213383
Bielack, S. S. et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20, 776–790 (2002).
pubmed: 11821461
doi: 10.1200/JCO.2002.20.3.776
pmcid: 11821461
Isakoff, M. S., Bielack, S. S., Meltzer, P. & Gorlick, R. Osteosarcoma: current treatment and a collaborative pathway to success. J. Clin. Oncol. 33, 3029–3035 (2015).
pubmed: 26304877
pmcid: 4979196
doi: 10.1200/JCO.2014.59.4895
Meyers, P. A. et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children’s Oncology Group. J. Clin. Oncol. 26, 633–638 (2008).
pubmed: 18235123
doi: 10.1200/JCO.2008.14.0095
pmcid: 18235123
Marina, N. M. et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 17, 1396–1408 (2016).
pubmed: 27569442
pmcid: 5052459
doi: 10.1016/S1470-2045(16)30214-5
Ferrari, S. et al. Neoadjuvant chemotherapy with methotrexate, cisplatin, and doxorubicin with or without ifosfamide in nonmetastatic osteosarcoma of the extremity: an Italian sarcoma group trial ISG/OS-1. J. Clin. Oncol. 30, 2112–2118 (2012).
pubmed: 22564997
doi: 10.1200/JCO.2011.38.4420
pmcid: 22564997
Daw, N. C. et al. Frontline treatment of localized osteosarcoma without methotrexate: results of the St. Jude Children’s Research Hospital OS99 trial. Cancer 117, 2770–2778 (2011).
pubmed: 21656756
doi: 10.1002/cncr.25715
pmcid: 21656756
Gaspar, N. et al. Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur. J. Cancer 88, 57–66 (2018).
pubmed: 29190507
doi: 10.1016/j.ejca.2017.09.036
pmcid: 29190507
Daw, N. C. et al. Recurrent osteosarcoma with a single pulmonary metastasis: a multi-institutional review. Br. J. Cancer 112, 278–282 (2015).
pubmed: 25422914
doi: 10.1038/bjc.2014.585
pmcid: 25422914
Buddingh, E. P. et al. Prognostic factors in pulmonary metastasized high-grade osteosarcoma. Pediatr. Blood Cancer 54, 216–221 (2010).
pubmed: 19890902
pmcid: 19890902
Briccoli, A. et al. High grade osteosarcoma of the extremities metastatic to the lung: long-term results in 323 patients treated combining surgery and chemotherapy, 1985–2005. Surg. Oncol. 19, 193–199 (2010).
pubmed: 19515554
doi: 10.1016/j.suronc.2009.05.002
pmcid: 19515554
Goorin, A. M. et al. Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J. Clin. Oncol. 20, 426–433 (2002).
pubmed: 11786570
doi: 10.1200/JCO.2002.20.2.426
pmcid: 11786570
Berrak, S. G., Pearson, M., Berberoglu, S., Ilhan, I. E. & Jaffe, N. High-dose ifosfamide in relapsed pediatric osteosarcoma: therapeutic effects and renal toxicity. Pediatr. Blood Cancer 44, 215–219 (2005).
pubmed: 15503294
doi: 10.1002/pbc.20228
pmcid: 15503294
Palmerini, E. et al. Gemcitabine and docetaxel in relapsed and unresectable high-grade osteosarcoma and spindle cell sarcoma of bone. BMC Cancer 16, 280 (2016).
pubmed: 27098543
pmcid: 4839113
doi: 10.1186/s12885-016-2312-3
Lagmay, J. P. et al. Outcome of patients with recurrent osteosarcoma enrolled in seven phase II trials through Children’s Cancer Group, Pediatric Oncology Group, and Children’s Oncology Group: learning from the past to move forward. J. Clin. Oncol. 34, 3031–3038 (2016).
pubmed: 27400942
pmcid: 5012712
doi: 10.1200/JCO.2015.65.5381
Arndt, C. A. et al. Inhaled granulocyte-macrophage colony stimulating factor for first pulmonary recurrence of osteosarcoma: effects on disease-free survival and immunomodulation. a report from the Children’s Oncology Group. Clin. Cancer Res. 16, 4024–4030 (2010).
pubmed: 20576718
pmcid: 2989183
doi: 10.1158/1078-0432.CCR-10-0662
Biegel, J. A., Womer, R. B. & Emanuel, B. S. Complex karyotypes in a series of pediatric osteosarcomas. Cancer Genet. Cytogenet. 38, 89–100 (1989).
pubmed: 2713818
doi: 10.1016/0165-4608(89)90169-6
pmcid: 2713818
Bridge, J. A. et al. Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet. Cytogenet. 95, 74–87 (1997).
pubmed: 9140456
doi: 10.1016/S0165-4608(96)00306-8
pmcid: 9140456
Unni, K. K. & Dahlin, D. C. Osteosarcoma: pathology and classification. Semin. Roentgenol. 24, 143–152 (1989).
pubmed: 2772662
doi: 10.1016/0037-198X(89)90010-2
pmcid: 2772662
Dahlin, D. C. & Unni, K. K. Osteosarcoma of bone and its important recognizable varieties. Am. J. Surg. Pathol. 1, 61–72 (1977).
pubmed: 203202
doi: 10.1097/00000478-197701010-00007
pmcid: 203202
Chen, X. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104–112 (2014).
pubmed: 24703847
pmcid: 4096827
doi: 10.1016/j.celrep.2014.03.003
Wang, L. L. et al. Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children’s Oncology Group study. Br. J. Cancer 113, 57–63 (2015).
pubmed: 26035700
pmcid: 4647535
doi: 10.1038/bjc.2015.188
Slayton, W. B., Schultz, K. R., Silverman, L. B. & Hunger, S. P. How we approach Philadelphia chromosome-positive acute lymphoblastic leukemia in children and young adults. Pediatr. Blood Cancer 67, e28543 (2020).
pubmed: 32779849
doi: 10.1002/pbc.28543
pmcid: 32779849
Glover, J. et al. A summary of the osteosarcoma banking efforts: a report from the Children’s Oncology Group and the QuadW Foundation. Pediatr. Blood Cancer 62, 450–455 (2015).
pubmed: 25611047
doi: 10.1002/pbc.25346
pmcid: 25611047
Glover, J. et al. Osteosarcoma enters a post genomic era with in silico opportunities: generation of the High Dimensional Database for facilitating sarcoma biology research: a report from the Children’s Oncology Group and the QuadW Foundation. PLoS ONE 12, e0181204 (2017).
pubmed: 28732082
pmcid: 5521774
doi: 10.1371/journal.pone.0181204
Strauss, S. J. et al. Report from the 4th European Bone Sarcoma Networking meeting: focus on osteosarcoma. Clin. Sarcoma Res. 8, 17 (2018).
pmcid: 6094460
doi: 10.1186/s13569-018-0103-0
Wu, Z. L. et al. Development of a novel immune-related genes prognostic signature for osteosarcoma. Sci. Rep. 10, 18402 (2020).
pubmed: 33110201
pmcid: 7591524
doi: 10.1038/s41598-020-75573-w
Bousquet, M. et al. Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations. Ann. Oncol. 27, 738–744 (2016).
pubmed: 26787232
doi: 10.1093/annonc/mdw009
pmcid: 26787232
Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat. Commun. 6, 8940 (2015).
pubmed: 26632267
doi: 10.1038/ncomms9940
pmcid: 26632267
Behjati, S. et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat. Commun. 8, 15936 (2017).
pubmed: 28643781
pmcid: 5490007
doi: 10.1038/ncomms15936
Perry, J. A. et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl Acad. Sci. USA 111, E5564–E5573 (2014).
pubmed: 25512523
pmcid: 4280630
doi: 10.1073/pnas.1419260111
Wu, C. C. & Livingston, J. A. Genomics and the immune landscape of osteosarcoma. Adv. Exp. Med. Biol. 1258, 21–36 (2020).
pubmed: 32767232
doi: 10.1007/978-3-030-43085-6_2
pmcid: 32767232
Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).
pubmed: 21215367
pmcid: 3065307
doi: 10.1016/j.cell.2010.11.055
Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).
pubmed: 32025003
pmcid: 7058534
doi: 10.1038/s41588-019-0576-7
Lorenz, S. et al. Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget 7, 5273–5288 (2016).
pubmed: 26672768
doi: 10.18632/oncotarget.6567
pmcid: 26672768
Wu, C. C. et al. Immuno-genomic landscape of osteosarcoma. Nat. Commun. 11, 1008 (2020).
pubmed: 32081846
pmcid: 7035358
doi: 10.1038/s41467-020-14646-w
Lau, C. et al. The Genomic Landscape of Osteosarcoma: a Target Report. 2019 CTOS Annual Meeting (2019).
Sayles, L. C. et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 9, 46–63 (2019).
pubmed: 30266815
pmcid: 30266815
Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).
pubmed: 20823417
doi: 10.1200/JCO.2009.27.4324
pmcid: 20823417
Houghton, P. J. et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer 49, 928–940 (2007).
pubmed: 17066459
doi: 10.1002/pbc.21078
pmcid: 17066459
Rokita, J. L. et al. Genomic profiling of childhood tumor patient-derived xenograft models to enable rational clinical trial design. Cell Rep. 29, 1675–1689.e9 (2019).
pubmed: 31693904
pmcid: 6880934
doi: 10.1016/j.celrep.2019.09.071
Kopp, L. M. et al. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: a report from the Children’s Oncology Group. Eur. J. Cancer 121, 177–183 (2019).
pubmed: 31586757
pmcid: 6952063
doi: 10.1016/j.ejca.2019.08.015
Isakoff, M. S. et al. A phase II study of eribulin in recurrent or refractory osteosarcoma: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 66, e27524 (2019).
pubmed: 30378256
doi: 10.1002/pbc.27524
pmcid: 30378256
Gill, J. et al. Dose-response effect of eribulin in preclinical models of osteosarcoma by the pediatric preclinical testing consortium. Pediatr. Blood Cancer 67, e28606 (2020).
pubmed: 32706456
pmcid: 32706456
Walkley, C. R. et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev. 22, 1662–1676 (2008).
pubmed: 18559481
pmcid: 2428063
doi: 10.1101/gad.1656808
Berman, S. D. et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc. Natl Acad. Sci. USA 105, 11851–11856 (2008).
pubmed: 18697945
pmcid: 2575280
doi: 10.1073/pnas.0805462105
Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).
pubmed: 12098700
doi: 10.1126/science.1071489
pmcid: 12098700
Feng, W. et al. Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther. Adv. Med. Oncol. 12, 1758835920922055 (2020).
pubmed: 32426053
pmcid: 7222246
Niu, J. et al. Identification of potential therapeutic targets and immune cell infiltration characteristics in osteosarcoma using bioinformatics strategy. Front. Oncol. 10, 1628 (2020).
pubmed: 32974202
pmcid: 7471873
doi: 10.3389/fonc.2020.01628
Watanabe, A. et al. Osteosarcoma in Sprague-Dawley rats after long-term treatment with teriparatide (human parathyroid hormone (1-34)). J. Toxicol. Sci. 37, 617–629 (2012).
He, Y. et al. cFOS-SOX9 axis reprograms bone marrow-derived mesenchymal stem cells into chondroblastic osteosarcoma. Stem Cell Rep. 8, 1630–1644 (2017).
doi: 10.1016/j.stemcr.2017.04.029
Zheng, B. et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J. Hematol. Oncol. 11, 16 (2018).
pubmed: 29409495
pmcid: 5801803
doi: 10.1186/s13045-018-0560-1
Wagner, F. et al. Humanization of bone and bone marrow in an orthotopic site reveals new potential therapeutic targets in osteosarcoma. Biomaterials 171, 230–246 (2018).
pubmed: 29705656
doi: 10.1016/j.biomaterials.2018.04.030
pmcid: 29705656
Angstadt, A. Y. et al. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: Signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Genes Chromosomes Cancer 50, 859–874 (2011).
pubmed: 21837709
doi: 10.1002/gcc.20908
pmcid: 21837709
Varshney, J., Scott, M. C., Largaespada, D. A. & Subramanian, S. Understanding the osteosarcoma pathobiology: a comparative oncology approach. Vet. Sci. 3, 3 (2016).
pmcid: 5644613
doi: 10.3390/vetsci3010003
Gordon, I., Paoloni, M., Mazcko, C. & Khanna, C. The comparative oncology trials consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med. 6, e1000161 (2009).
pubmed: 19823573
pmcid: 2753665
doi: 10.1371/journal.pmed.1000161
Isakoff, M. S. et al. Rapid protocol enrollment in osteosarcoma: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 63, 370–371 (2016).
pubmed: 26376351
doi: 10.1002/pbc.25754
pmcid: 26376351
Grignani, G. et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann. Oncol. 23, 508–516 (2012).
pubmed: 21527590
doi: 10.1093/annonc/mdr151
pmcid: 21527590
Davis, L. E. et al. Randomized double-blind phase II study of regorafenib in patients with metastatic osteosarcoma. J. Clin. Oncol. 37, 1424–1431 (2019).
pubmed: 31013172
pmcid: 7799443
doi: 10.1200/JCO.18.02374
Smith, M. et al. Abstract LB-353: pediatric preclinical testing program (PPTP) stage 1 evaluation of cabozantinib. Cancer Res. 73 (Suppl. 8), LB-353 (2013).
Italiano, A. et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 446–455 (2020).
pubmed: 32078813
doi: 10.1016/S1470-2045(19)30825-3
pmcid: 32078813
Gaspar, N. et al. Single-agent expansion cohort of lenvatinib (LEN) and combination dose-finding cohort of LEN+etoposide (ETP)+ifosfamide (IFM) in patients (pts) aged 2 to ≤25 years with relapsed/refractory osteosarcoma (OS). J. Clin. Oncol. 36 (Suppl. 15), 11527 (2018).
doi: 10.1200/JCO.2018.36.15_suppl.11527
Aggerholm-Pedersen, N., Rossen, P., Rose, H. & Safwat, A. Pazopanib in the treatment of bone sarcomas: clinical experience. Transl Oncol. 13, 295–299 (2020).
pubmed: 31875575
doi: 10.1016/j.tranon.2019.12.001
pmcid: 31875575
Grignani, G. et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 16, 98–107 (2015).
pubmed: 25498219
doi: 10.1016/S1470-2045(14)71136-2
pmcid: 25498219
Urciuoli, E. et al. Src nuclear localization and its prognostic relevance in human osteosarcoma. J. Cell Physiol. 233, 1658–1670 (2018).
pubmed: 28671269
doi: 10.1002/jcp.26079
pmcid: 28671269
Kolb, E. A. et al. Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr. Blood Cancer 50, 1198–1206 (2008).
pubmed: 17914733
doi: 10.1002/pbc.21368
pmcid: 17914733
Baird, K. et al. Results of a randomized, double-blinded, placebo-controlled, phase 2.5 study of saracatinib (AZD0530), in patients with recurrent osteosarcoma localized to lung. Sarcoma 2020, 7935475 (2020).
pubmed: 32398945
pmcid: 7211262
doi: 10.1155/2020/7935475
Kubo, T. et al. Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer 112, 2119–2129 (2008).
pubmed: 18338812
doi: 10.1002/cncr.23437
pmcid: 18338812
Chugh, R. et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J. Clin. Oncol. 27, 3148–3153 (2009).
pubmed: 19451433
doi: 10.1200/JCO.2008.20.5054
pmcid: 19451433
Kolb, E. A. et al. Preclinical evaluation of the combination of AZD1775 and irinotecan against selected pediatric solid tumors: a pediatric preclinical testing consortium report. Pediatr. Blood Cancer 67, e28098 (2020).
pubmed: 31975571
doi: 10.1002/pbc.28098
pmcid: 31975571
Kreahling, J. M. et al. Wee1 inhibition by MK-1775 leads to tumor inhibition and enhances efficacy of gemcitabine in human sarcomas. PLoS ONE 8, e57523 (2013).
pubmed: 23520471
pmcid: 3592874
doi: 10.1371/journal.pone.0057523
PosthumaDeBoer, J. et al. WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer 11, 156 (2011).
pubmed: 21529352
pmcid: 3103478
doi: 10.1186/1471-2407-11-156
Zhou, Y. et al. Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1573–1582 (2018).
pubmed: 29452249
doi: 10.1016/j.bbadis.2018.02.004
pmcid: 29452249
Higuchi, T. et al. Sorafenib and palbociclib combination regresses a cisplatinum-resistant osteosarcoma in a PDOX mouse model. Anticancer Res. 39, 4079 (2019).
pubmed: 31366491
doi: 10.21873/anticanres.13565
pmcid: 31366491
Tavanti, E. et al. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma. Br. J. Cancer 109, 2607–2618 (2013).
pubmed: 24129234
pmcid: 3833226
doi: 10.1038/bjc.2013.643
Maris, J. M. et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the pediatric preclinical testing program (PPTP). Pediatr. Blood Cancer 55, 26–34 (2010).
pubmed: 20108338
pmcid: 2874079
Zhao, Z. et al. Aurora B kinase as a novel molecular target for inhibition the growth of osteosarcoma. Mol. Carcinog. 58, 1056–1067 (2019).
pubmed: 30790360
pmcid: 6525060
doi: 10.1002/mc.22993
Mossé, Y. P. et al. A phase II study of alisertib in children with recurrent/refractory solid tumors or leukemia: Children’s Oncology Group Phase I and Pilot Consortium (ADVL0921). Clin. Cancer Res. 25, 3229 (2019).
pubmed: 30777875
pmcid: 6897379
doi: 10.1158/1078-0432.CCR-18-2675
Fu, W. et al. The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol. Cancer Ther. 10, 1018–1027 (2011).
pubmed: 21490307
pmcid: 4727401
doi: 10.1158/1535-7163.MCT-11-0167
Gorlick, R. et al. Initial testing (stage 1) of the cyclin dependent kinase inhibitor SCH 727965 (dinaciclib) by the pediatric preclinical testing program. Pediatr. Blood Cancer 59, 1266–1274 (2012).
pubmed: 22315240
pmcid: 3349821
doi: 10.1002/pbc.24073
Li, X. et al. Inhibition of ATR-Chk1 signaling blocks DNA double-strand-break repair and induces cytoplasmic vacuolization in metastatic osteosarcoma. Ther. Adv. Med. Oncol. 12, 1758835920956900 (2020).
pubmed: 32973933
pmcid: 7493280
Kleinerman, E. S., Murray, J. L., Snyder, J. S., Cunningham, J. E. & Fidler, I. J. Activation of tumoricidal properties in monocytes from cancer patients following intravenous administration of liposomes containing muramyl tripeptide phosphatidylethanolamine. Cancer Res. 49, 4665–4670 (1989).
pubmed: 2787207
pmcid: 2787207
Gordon, N. et al. Fas expression in lung metastasis from osteosarcoma patients. J. Pediatr. Hematol. Oncol. 27, 611–615 (2005).
pubmed: 16282894
doi: 10.1097/01.mph.0000188112.42576.df
pmcid: 16282894
Gordon, N. & Kleinerman, E. S. The role of Fas/FasL in the metastatic potential of osteosarcoma and targeting this pathway for the treatment of osteosarcoma lung metastases. Cancer Treat. Res. 152, 497–508 (2009).
pubmed: 20213411
doi: 10.1007/978-1-4419-0284-9_29
pmcid: 20213411
Koshkina, N. V., Rao-Bindal, K. & Kleinerman, E. S. Effect of the histone deacetylase inhibitor SNDX-275 on Fas signaling in osteosarcoma cells and the feasibility of its topical application for the treatment of osteosarcoma lung metastases. Cancer 117, 3457–3467 (2011).
pubmed: 21287529
doi: 10.1002/cncr.25884
pmcid: 21287529
Gross, A. C. et al. IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI Insight 3, e99791 (2018).
pmcid: 6141177
doi: 10.1172/jci.insight.99791
Liu, J. F. et al. CXCL13/CXCR5 interaction facilitates VCAM-1-dependent migration in human osteosarcoma. Int. J. Mol. Sci. 21, 6095 (2020).
pmcid: 7504668
doi: 10.3390/ijms21176095
Morrow, J. J. et al. Positively selected enhancer elements endow osteosarcoma cells with metastatic competence. Nat. Med. 24, 176–185 (2018).
pubmed: 29334376
pmcid: 5803371
doi: 10.1038/nm.4475
Murgai, M. et al. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat. Med. 23, 1176–1190 (2017).
pubmed: 28920957
pmcid: 5724390
doi: 10.1038/nm.4400
Charan, M. et al. Tumor secreted ANGPTL2 facilitates recruitment of neutrophils to the lung to promote lung pre-metastatic niche formation and targeting ANGPTL2 signaling affects metastatic disease. Oncotarget 11, 510–522 (2020).
pubmed: 32082485
pmcid: 7007290
doi: 10.18632/oncotarget.27433
Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 3, 1–48 (1910).
pubmed: 19974799
pmcid: 1961042
Jeys, L. M., Grimer, R. J., Carter, S. R., Tillman, R. M. & Abudu, A. Post operative infection and increased survival in osteosarcoma patients: are they associated? Ann. Surg. Oncol. 14, 2887–2895 (2007).
pubmed: 17653803
doi: 10.1245/s10434-007-9483-8
pmcid: 17653803
Chen, Y. U., Xu, S. F., Xu, M. & Yu, X. C. Postoperative infection and survival in osteosarcoma patients: reconsideration of immunotherapy for osteosarcoma. Mol. Clin. Oncol. 3, 495–500 (2015).
pubmed: 26137256
pmcid: 4471531
doi: 10.3892/mco.2015.528
Koirala, P. et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci. Rep. 6, 30093 (2016).
pubmed: 27456063
pmcid: 4960483
doi: 10.1038/srep30093
Koirala, P. et al. HHLA2, a member of the B7 family, is expressed in human osteosarcoma and is associated with metastases and worse survival. Sci. Rep. 6, 31154 (2016).
pubmed: 27531281
pmcid: 4987662
doi: 10.1038/srep31154
Wolf-Dennen, K., Gordon, N. & Kleinerman, E. S. Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions. Oncoimmunology 9, 1747677 (2020).
pubmed: 7153823
pmcid: 7153823
doi: 10.1080/2162402X.2020.1747677
Corre, I., Verrecchia, F., Crenn, V., Redini, F. & Trichet, V. The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells 9, 976 (2020).
pmcid: 7226971
doi: 10.3390/cells9040976
Kleinerman, E. S., Erickson, K. L., Schroit, A. J., Fogler, W. E. & Fidler, I. J. Activation of tumoricidal properties in human blood monocytes by liposomes containing lipophilic muramyl tripeptide. Cancer Res. 43, 2010–2014 (1983).
pubmed: 6831430
pmcid: 6831430
Gisch, N., Buske, B., Heine, H., Lindner, B. & Zähringer, U. Synthesis of biotinylated muramyl tripeptides with NOD2-stimulating activity. Bioorg. Med. Chem. Lett. 21, 3362–3366 (2011).
pubmed: 21530249
doi: 10.1016/j.bmcl.2011.04.005
pmcid: 21530249
Anderson, P. M. et al. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments. Pediatr. Blood Cancer 61, 238–244 (2014).
pubmed: 23997016
doi: 10.1002/pbc.24686
pmcid: 23997016
Bielack, S. S. et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon Alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J. Clin. Oncol. 33, 2279–2287 (2015).
pubmed: 26033801
pmcid: 4486345
doi: 10.1200/JCO.2014.60.0734
Sikic, B. I. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).
pubmed: 30811285
pmcid: 7186585
doi: 10.1200/JCO.18.02018
Xu, J. F. et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models. Oncotarget 6, 23662–23670 (2015).
pubmed: 26093091
pmcid: 4695143
doi: 10.18632/oncotarget.4282
Theruvath, J. et al. Abstract PR07: GD2 is a macrophage checkpoint molecule and combined GD2/CD47 blockade results in synergistic effects and tumor clearance in xenograft models of neuroblastoma and osteosarcoma. Cancer Res. 80 (Suppl. 14), PR07 (2020).
Harjunpaa, H., Llort Asens, M., Guenther, C. & Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019).
pubmed: 31231358
pmcid: 6558418
doi: 10.3389/fimmu.2019.01078
Huang, A. Y.-C. Targeting VCAM1-a4b1 signaling to ameliorate pulmonary osteosarcoma metastasis. NIH https://grantome.com/grant/NIH/R21-CA218790-01 (2017).
Fritzsching, B. et al. CD8
pubmed: 25949908
pmcid: 4404826
doi: 10.4161/2162402X.2014.990800
Geukes Foppen, M. H., Donia, M., Svane, I. M. & Haanen, J. B. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol. 9, 1918–1935 (2015).
pubmed: 26578452
pmcid: 5528735
doi: 10.1016/j.molonc.2015.10.018
Guma, S. R. et al. Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr. Blood Cancer 61, 618–626 (2014).
pubmed: 24136885
doi: 10.1002/pbc.24801
pmcid: 24136885
Kiany, S., Huang, G. & Kleinerman, E. S. Effect of entinostat on NK cell-mediated cytotoxicity against osteosarcoma cells and osteosarcoma lung metastasis. Oncoimmunology 6, e1333214 (2017).
pubmed: 28919994
pmcid: 5593704
doi: 10.1080/2162402X.2017.1333214
Tullius B. P., Setty B. A., Lee D. A. in Current Advances in Osteosarcoma: Clinical Perspectives: Past, Present and Future (eds Kleinerman E. S. & Gorlick R.) 141–154 (Springer International Publishing, 2020).
Habib, S., Tariq, S. M. & Tariq, M. Chimeric antigen receptor-natural killer cells: the future of cancer immunotherapy. Ochsner J. 19, 186–187 (2019).
pubmed: 31528126
pmcid: 6735593
doi: 10.31486/toj.19.0033
Wang, L. et al. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS ONE 8, e70689 (2013).
pubmed: 23940627
pmcid: 3734259
doi: 10.1371/journal.pone.0070689
McEachron, T. A., Triche, T. J., Sorenson, L., Parham, D. M. & Carpten, J. D. Profiling targetable immune checkpoints in osteosarcoma. Oncoimmunology 7, e1475873 (2018).
pubmed: 30524885
pmcid: 6279416
doi: 10.1080/2162402X.2018.1475873
Le Cesne, A. et al. Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study. Eur. J. Cancer 119, 151–157 (2019).
pubmed: 31442817
doi: 10.1016/j.ejca.2019.07.018
pmcid: 31442817
Tawbi, H. A. et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18, 1493–1501 (2017).
pubmed: 28988646
pmcid: 7939029
doi: 10.1016/S1470-2045(17)30624-1
Davis, K. L. et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 21, 541–550 (2020).
pubmed: 32192573
pmcid: 7255545
doi: 10.1016/S1470-2045(20)30023-1
Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).
pubmed: 29489754
doi: 10.1038/nature25480
pmcid: 29489754
Dhupkar, P., Gordon, N., Stewart, J. & Kleinerman, E. S. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 7, 2654–2664 (2018).
pubmed: 29733528
pmcid: 6010882
doi: 10.1002/cam4.1518
Hong, Y. K. et al. Epigenetic modulation enhances immunotherapy for hepatocellular carcinoma. Cell Immunol. 336, 66–74 (2019).
pubmed: 30626493
doi: 10.1016/j.cellimm.2018.12.010
pmcid: 30626493
Lhuillier, C. et al. Radiotherapy-exposed CD8
pmcid: 7919731
doi: 10.1172/JCI138740
Zhang, B. CD73: a novel target for cancer immunotherapy. Cancer Res. 70, 6407–6411 (2010).
pubmed: 20682793
pmcid: 2922475
doi: 10.1158/0008-5472.CAN-10-1544
Roth, M. et al. Targeting glycoprotein NMB with antibody-drug conjugate, glembatumumab vedotin, for the treatment of osteosarcoma. Pediatr. Blood Cancer 63, 32–38 (2016).
pubmed: 26305408
doi: 10.1002/pbc.25688
pmcid: 26305408
Kolb, E. A. et al. Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatr. Blood Cancer 61, 1816–1821 (2014).
pubmed: 24912408
pmcid: 4280502
doi: 10.1002/pbc.25099
Cui, J. C. et al. Expression and clinical implications of leucine-rich repeat containing 15 (LRRC15) in osteosarcoma. J. Orthop. Res. 38, 2362–2372 (2020).
pubmed: 32902907
doi: 10.1002/jor.24848
pmcid: 32902907
Hingorani, P. et al. ABBV-085, antibody-drug conjugate targeting LRRC15, is effective in osteosarcoma: a report by the Pediatric Preclinical Testing Consortium. Mol. Cancer Ther. 20, 535–540 (2021).
pubmed: 33298592
doi: 10.1158/1535-7163.MCT-20-0406
pmcid: 33298592
Gill J. H. P. et al. Evaluation of ABBV-085, an antibody-drug conjugate targeting LRRC15, in osteosarcoma by the Pediatric Preclinical Testing Consortium. Connective Tissue Oncology Society Meeting (Poster). 137 (2019).
Demetri, G. D. et al. First-in-human phase 1 study of ABBV-085, an antibody-drug conjugate (ADC) targeting LRRC15, in sarcomas and other advanced solid tumors. J. Clin. Oncol. 37, 3004–3004 (2019).
doi: 10.1200/JCO.2019.37.15_suppl.3004
Gorlick, R. et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J. Clin. Oncol. 17, 2781–2788 (1999).
pubmed: 10561353
doi: 10.1200/JCO.1999.17.9.2781
pmcid: 10561353
Gorlick, S. et al. HER-2 expression is not prognostic in osteosarcoma; a Children’s Oncology Group prospective biology study. Pediatr. Blood Cancer 61, 1558–1564 (2014).
pubmed: 24753182
pmcid: 4288578
doi: 10.1002/pbc.25074
Gill J., Geller D., & Gorlick, R. in Current Advances in Osteosarcoma (ed. Kleinerman, M. D. E. S.) 161–177 (Springer International Publishing, 2014).
Ebb, D. et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the Children’s Oncology Group. J. Clin. Oncol. 30, 2545–2551 (2012).
pubmed: 22665540
pmcid: 3397787
doi: 10.1200/JCO.2011.37.4546
Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).
pubmed: 25800760
pmcid: 4429176
doi: 10.1200/JCO.2014.58.0225
Navai S. et al. Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas (AACR Annual Meeting, 2019).
Modi, S. et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J. Clin. Oncol. 38, 1887–1896 (2020).
pubmed: 32058843
pmcid: 7280051
doi: 10.1200/JCO.19.02318
Hingorani, P. et al. Abstract LB-217: preclinical evaluation of trastuzumab deruxtecan (T-DXd; DS-8201a), a HER2 antibody-drug conjugate, in pediatric solid tumors by the Pediatric Preclinical Testing Consortium (PPTC). Cancer Res. 80 (Suppl. 16), LB-217 (2020).
Roth, M. et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer 120, 548–554 (2014).
pubmed: 24166473
doi: 10.1002/cncr.28461
pmcid: 24166473
Poon, V. I. et al. Ganglioside GD2 expression is maintained upon recurrence in patients with osteosarcoma. Clin. Sarcoma Res. 5, 4 (2015).
pubmed: 25642322
pmcid: 4311500
doi: 10.1186/s13569-014-0020-9
Keyel, M. E. & Reynolds, C. P. Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics 13, 1–12 (2019).
pubmed: 30613134
pmcid: 30613134
Hingorani, P. et al. Phase II study of antidisialoganglioside antibody, dinutuximab, in combination with GM-CSF in patients with recurrent osteosarcoma (AOST1421): a report from the Children’s Oncology Group. J. Clin. Oncol. 38 (Suppl. 15), 10508 (2020).
doi: 10.1200/JCO.2020.38.15_suppl.10508
Picarda, E., Ohaegbulam, K. C. & Zang, X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin. Cancer Res. 22, 3425–3431 (2016).
pubmed: 27208063
pmcid: 4947428
doi: 10.1158/1078-0432.CCR-15-2428
Onda, M., Wang, Q. C., Guo, H. F., Cheung, N. K. & Pastan, I. In vitro and in vivo cytotoxic activities of recombinant immunotoxin 8H9(Fv)-PE38 against breast cancer, osteosarcoma, and neuroblastoma. Cancer Res. 64, 1419–1424 (2004).
pubmed: 14973056
doi: 10.1158/0008-5472.CAN-03-0570
pmcid: 14973056
Kurmasheva, R. et al. Abstract C003: initial testing of m276-PBD CD276 antibody-drug conjugate in preclinical models of pediatric cancers by the Pediatric Preclinical Testing Consortium (PPTC). Mol. Cancer Ther. 18 (Suppl. 12), C003 (2019).
Seaman, S. et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31, 501–515.e8 (2017).
pubmed: 28399408
pmcid: 5458750
doi: 10.1016/j.ccell.2017.03.005
Scribner, J. A. et al. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol. Cancer Ther. https://doi.org/10.1158/1535-7163.Mct-20-0116 (2020).
doi: 10.1158/1535-7163.Mct-20-0116
pubmed: 32967924
pmcid: 32967924
Powderly, J. D. et al. Preliminary dose escalation results from a phase I/II, first-in-human study of MGC018 (anti-B7-H3 antibody-drug conjugate) in patients with advanced solid tumors. J. Clin. Oncol. 38 (Suppl. 15), 3071–3071 (2020).
doi: 10.1200/JCO.2020.38.15_suppl.3071
Majzner, R. G. et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin. Cancer Res. 25, 2560–2574 (2019).
pubmed: 30655315
doi: 10.1158/1078-0432.CCR-18-0432
pmcid: 30655315
Hassan, S. E. et al. Cell surface receptor expression patterns in osteosarcoma. Cancer 118, 740–749 (2012).
pubmed: 21751203
doi: 10.1002/cncr.26339
pmcid: 21751203
Sevelda, F. et al. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. J. Exp. Clin. Cancer Res. 34, 134 (2015).
pubmed: 26526352
pmcid: 4630894
doi: 10.1186/s13046-015-0251-5
Huang, Z. et al. Clinicopathological and prognostic values of ErbB receptor family amplification in primary osteosarcoma. Scand. J. Clin. Lab. Invest. 79, 601–612 (2019).
pubmed: 31663373
doi: 10.1080/00365513.2019.1683764
pmcid: 31663373
O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aaa0984 (2017).
doi: 10.1126/scitranslmed.aaa0984
pubmed: 28724573
pmcid: 5762203
Schultz, L. Chimeric antigen receptor T cell therapy for pediatric B-ALL: narrowing the gap between early and long-term outcomes. Front. Immunol. 11, 1985 (2020).
pubmed: 32849662
pmcid: 7431960
doi: 10.3389/fimmu.2020.01985
Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322 (2020).
pubmed: 33303760
pmcid: 7730477
doi: 10.1038/s41467-020-20059-6
Moriarity, B. S. et al. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat. Genet. 47, 615–624 (2015).
pubmed: 25961939
pmcid: 4767150
doi: 10.1038/ng.3293
Parra, E. R., Francisco-Cruz, A. & Wistuba, I. I. State-of-the-art of profiling immune contexture in the era of multiplexed staining and digital analysis to study paraffin tumor tissues. Cancers 11, 247 (2019).
pmcid: 6406364
doi: 10.3390/cancers11020247
Anninga, J. K. et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur. J. Cancer 47, 2431–2445 (2011).
pubmed: 21703851
doi: 10.1016/j.ejca.2011.05.030
pmcid: 21703851
Fuchs, N. et al. Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group’s protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann. Oncol. 9, 893–899 (1998).
pubmed: 9789613
doi: 10.1023/A:1008391103132
pmcid: 9789613
Bacci, G. et al. Neoadjuvant chemotherapy for osteosarcoma of the extremity: long-term results of the Rizzoli’s 4th protocol. Eur. J. Cancer 37, 2030–2039 (2001).
pubmed: 11597381
doi: 10.1016/S0959-8049(01)00229-5
pmcid: 11597381
Goorin, A. M. et al. Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: Pediatric Oncology Group Study POG-8651. J. Clin. Oncol. 21, 1574–1580 (2003).
pubmed: 12697883
doi: 10.1200/JCO.2003.08.165
pmcid: 12697883
Chou, A. J. et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer 115, 5339–5348 (2009).
pubmed: 19637348
doi: 10.1002/cncr.24566
pmcid: 19637348
Serra, M. et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int. J. Oncol. 29, 1459–1468 (2006).
pubmed: 17088985
pmcid: 17088985
Whelan, J. S. et al. Survival from high-grade localised extremity osteosarcoma: combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann. Oncol. 23, 1607–1616 (2012).
pubmed: 22015453
doi: 10.1093/annonc/mdr491
pmcid: 22015453
Link, M. P. et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N. Engl. J. Med. 314, 1600–1606 (1986).
pubmed: 3520317
doi: 10.1056/NEJM198606193142502
pmcid: 3520317
Marec-Berard, P. et al. Methotrexate-etoposide-ifosfamide compared with doxorubicin-cisplatin-ifosfamide chemotherapy in osteosarcoma treatment, patients aged 18–25 years. J. Adolesc. Young Adult Oncol. 9, 172–182 (2020).
pubmed: 31702419
doi: 10.1089/jayao.2019.0085
pmcid: 31702419
Winkler, K. et al. Neoadjuvant chemotherapy for osteogenic sarcoma: results of a Cooperative German/Austrian study. J. Clin. Oncol. 2, 617–624 (1984).
pubmed: 6202851
doi: 10.1200/JCO.1984.2.6.617
pmcid: 6202851
Winkler, K. et al. Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J. Clin. Oncol. 6, 329–337 (1988).
pubmed: 2448428
doi: 10.1200/JCO.1988.6.2.329
pmcid: 2448428
Bramwell, V. H. et al. A randomized comparison of two short intensive chemotherapy regimens in children and young adults with osteosarcoma: results in patients with metastases: a Study of the European Osteosarcoma Intergroup. Sarcoma 1, 155–160 (1997).
pubmed: 18521218
pmcid: 2395371
doi: 10.1080/13577149778245
Le Deley, M. C. et al. SFOP OS94: a randomised trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. Eur. J. Cancer 43, 752–761 (2007).
pubmed: 17267204
doi: 10.1016/j.ejca.2006.10.023
pmcid: 17267204
Ferrari, S. et al. Nonmetastatic osteosarcoma of the extremity: results of a neoadjuvant chemotherapy protocol (IOR/OS-3) with high-dose methotrexate, intraarterial or intravenous cisplatin, doxorubicin, and salvage chemotherapy based on histologic tumor response. Tumori 85, 458–464 (1999).
pubmed: 10774566
doi: 10.1177/030089169908500607
pmcid: 10774566
Smeland, S. et al. Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII: prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histological responders. Eur. J. Cancer 39, 488–494 (2003).
pubmed: 12751380
doi: 10.1016/S0959-8049(02)00747-5
pmcid: 12751380