Ontogeny, phylogeny and mechanisms of adaptive changes in evaporative water loss in geckos.
adaptation
aridity
evaporation
lizards
metabolic rate
scaling
Journal
Journal of evolutionary biology
ISSN: 1420-9101
Titre abrégé: J Evol Biol
Pays: Switzerland
ID NLM: 8809954
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
revised:
23
05
2021
received:
30
03
2021
accepted:
01
06
2021
pubmed:
17
6
2021
medline:
15
12
2021
entrez:
16
6
2021
Statut:
ppublish
Résumé
Body size dependence of metabolic rate, body surface and scale morphology complicate disentangling the contribution of these characteristics to adaptive changes in total evaporative water loss (TEWL) of reptiles. To separate adaptive changes from size-related dependence, we compared intra- and interspecific scaling of several candidate traits in eyelid geckos (Eublepharidae), a group exhibiting large variation in body size and TEWL. The intraspecific allometry of TEWL of a eublepharid species fits the geometric surface-mass relationship. However, evolutionary shifts to both higher and lower evaporation were strongly correlated with habitat aridity and cannot be explained by shifts in body size alone. The intraspecific allometry of standard metabolic rate is nearly the same as the interspecific allometry. Unlike for mammals and birds, this pattern rules out respiratory water loss as a driver of the adaptive changes in TEWL among eublepharids. Scale morphology was independent of TEWL variation as well, but the correlation between cutaneous water loss and TEWL suggests a crucial role of skin permeability in adaptation to habitat aridity. Our analyses demonstrate how powerful a comparison between intra- and interspecific allometries can be for detecting body size-dependent mechanisms of adaptive changes in ecophysiological traits correlated with body size.
Substances chimiques
Water
059QF0KO0R
Banques de données
Dryad
['10.5061/dryad.0zpc866xq']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1290-1301Informations de copyright
© 2021 European Society for Evolutionary Biology.
Références
Alberch, P., Gould, S. J., Oster, G. F., & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5, 269-317.
Alibardi, L. (2003). Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes. Journal of Experimental Zoology Part B, 298, 12-41. https://doi.org/10.1002/jez.b.24
Bennett, A. F., & Dawson, W. R. (1976). Metabolism. In C. Gans, & W. R. Dawson (Eds.), Biology of the Reptilia (Vol. 5, pp. 127-223). Academic Press.
Bennett, A. B., & Licht, P. (1975). Evaporative water loss in scaleless snakes. Comparative Biochemistry and Physiology Part A: Physiology, 52, 213-215. https://doi.org/10.1016/S0300-9629(75)80155-1
Calsbeek, R., Knouft, J. H., & Smith, T. B. (2006). Variation in scale numbers is consistent with ecologically based natural selection acting within and between lizard species. Evolutionary Ecology, 20, 377-394. https://doi.org/10.1007/s10682-006-0007-y
Careau, V., Morand-Ferron, J., & Thomas, D. (2007). Basal metabolic rate of Canidae from hot deserts to cold arctic climates. Journal of Mammalogy, 88, 394-400. https://doi.org/10.1644/06-MAMM-A-111R1.1
Cavanaugh, J. E. (1997). Unifying the derivations of the Akaike and corrected Akaike information criteria. Statistics & Probability Letters, 31, 201-208.
Champagne, A. M., Muñoz-Garcia, A., Shtayyeh, T., Tieleman, B. I., Hegemann, A., Clement, M. E., & Williams, J. B. (2012). Lipid composition of the stratum corneum and cutaneous water loss in birds along an aridity gradient. Journal of Experimental Biology, 215, 4299-4307. https://doi.org/10.1242/jeb.077016
Cox, C. L., & Cox, R. M. (2015). Evolutionary shifts in habitat aridity predict evaporative water loss across squamate reptiles. Evolution, 69, 2507-2516. https://doi.org/10.1111/evo.12742
D'Andrea, L., Russo, T., Parisi, A., & Cataudella, S. (2018). smartR: spatial management and assessment of demersal resources for trawl fisheries. https://cran.r-project.org/web/packages/smartR/index.html
Dawson, W. R. (1982). Evaporative losses of water by birds. Comparative Biochemistry and Physiology Part A: Physiology, 71, 495-509. https://doi.org/10.1016/0300-9629(82)90198-0
de Martonne, E. (1926). Une nouvelle fanction climatologique: L’indice d’aridité. La Météorologie, 2, 449-458.
Dial, E. D., & Grismer, L. L. (1992). A phylogenetic analysis of physiological-ecological character evolution in the lizard genus Coleonyx and its implications for historical biogeographic reconstruction. Systematic Biology., 41(178), 178-195. https://doi.org/10.1093/sysbio/41.2.178
Dupoué, A., Brischoux, F., & Lourdais, O. (2017). Climate and foraging mode explain interspecific variation in snake metabolic rates. Proceedings of the Royal Society B, Biological Sciences, 284, 20172108.
Emberger, L. (1955). Afrique du Nord-Quest. In UNESCO (Ed.), Plant ecology: Reviews of research (pp. 219-249). UNESCO.
Esquerré, D., Sherratt, E., & Keogh, S. J. (2017). Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution, 71-12, 2829-2844.
Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist, 160, 712-726. https://doi.org/10.1086/343873
Gerber, S., & Hopkins, M. J. (2011). Mosaic heterochrony and evolutionary modularity: The trilobite genus Zacanthopsis as a case study. Evolution, 65, 3241-3252. https://doi.org/10.1111/j.1558-5646.2011.01363.x
Gillooly, J. F., Gomez, J. P., Mavrodiev, E. V., Rong, Y., & McLamore, E. S. (2016). Body mass scaling of passive oxygen diffusion in endotherms and ectotherms. Proceedings of the National Academy of Sciences USA, 113, 5340-5345. https://doi.org/10.1073/pnas.1519617113
Gilman, C. A., Candelaria, G., Gershman, B., Norenberg, J. P., & Wolf, B. O. (2013). Respiratory biology during gravidity in Crotaphytus collaris and Gambelia wislizenii. Journal of Herpetology, 47, 262-269.
Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 587-640. https://doi.org/10.1111/j.1469-185X.1966.tb01624.x
Gould, S. J. (1977). Ontogeny and phylogeny. Harvard University Press.
Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society of London, Series B, 326, 119-157.
Grismer, L. L. (1988). Phylogeny, taxonomy, classification and biogeography of eublepharid geckos. In R. Estes, & G. Pregill (Eds.) Phylogenetic relationships of the lizard families (pp. 369-469). Stanford University Press.
Grismer, L. L. (1991). Cladistic relationships of the lizard Eublepharis turcmenicus (Squamata: Eublepharidae). Journal of Herpetology, 25, 251-253. https://doi.org/10.2307/1564667
Gunderson, A., Siegel, J., & Leal, M. (2011). Tests of the contribution of acclimation to geographic variation in water loss rates of the West Indian lizard Anolis cristatellus. Journal of Comparative Physiology Part B, 181, 965-972. https://doi.org/10.1007/s00360-011-0576-0
Harkewicz, K. A. (2002). Dermatologic problems of reptiles. Seminars in Avian and Exotic Pet Medicine, 11, 151-161. https://doi.org/10.1053/saeb.2002.123977
Haugen, M., Williams, J. B., Wertz, P., & Tieleman, B. I. (2003). Lipids of the stratum corneum vary with cutaneous water loss among larks along a temperature-moisture gradient. Physiological and Biochemical Zoology, 76, 907-917. https://doi.org/10.1086/380213
Honda, M., & Ota, H. (2017). On the live coloration and partial mitochondrial DNA sequences in the topotypic population of Goniurosaurus kuroiwae orientalis (Squamata: Eublepharidae), with description of a new subspecies from Tokashikijima island, Ryukyu archipelago, Japan. Asian Herpetological Research, 8, 96-107.
Horton, D. R. (1972). Lizard scales and adaptation. Systematic Zoology, 21, 441-443. https://doi.org/10.1093/sysbio/21.4.441
Kratochvíl, L. (2006). Captive breeding and a threatened gecko. Science, 313, 915. https://doi.org/10.1126/science.313.5789.915b
Kratochvíl, L., & Flégr, J. (2009). Differences in the 2nd to 4th digit length ratio in humans reflect shifts along the common allometric line. Biology Letters, 5, 643-646. https://doi.org/10.1098/rsbl.2009.0346
Liang, B., Zhou, R. B., Liu, Y. L., Chen, B., Grismer, L. L., & Wang, N. (2018). Renewed classification within Goniurosaurus (Squamata: Eublepharidae) uncovers the dual roles of a continental island (Hainan) in species evolution. Molecular Phylogenetics and Evolution, 127, 646-654. https://doi.org/10.1016/j.ympev.2018.06.011
Licht, P., & Bennett, A. F. (1972). A scaleless snake: Tests of the role of reptilian scales in water loss and heat transfer. Copeia, 1972, 702-707. https://doi.org/10.2307/1442730
Lighton, J. R. (2008). Measuring metabolic rates: A manual for scientists. Oxford University Press.
Lighton, J. R., & Halsey, L. G. (2011). Flow-through respirometry applied to chamber systems: Pros and cons, hints and tips. Comparative Biochemistry and Physiology. Part A, 158, 265-275.
Lillywhite, H. B. (2006). Water relations of tetrapod integument. Journal of Experimental Biology, 209, 202-226. https://doi.org/10.1242/jeb.02007
Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. The American Naturalist, 156, 201-219.
Maas, A. K. III (2013). Vesicular, ulcerative, and necrotic dermatitis of reptiles. Veterinary Clinics of North America: Exotic Animal Practice, 16, 737-755.
Maddison, W. P., & Maddison, D. R. (2018). Mesquite: A modular system for evolutionary analysis. Version 3.04. http://www.mesquiteproject.org
Malhotra, A., & Thorpe, R. S. (1997). Microgeographic variation in scalation of Anolis oculatus (Dominica, West Indies): A multivariate analysis. Herpetologica, 53, 49-62.
Mautz, W. J. (1980). Factors influencing evaporative water loss in lizards. Comparative Biochemistry and Physiology Part A: Physiology, 67, 429-437. https://doi.org/10.1016/S0300-9629(80)80019-3
Mautz, W. J. (1982). Patterns of evaporative water loss. In C. Gans, & F. H. Pough (Eds.), Biology of the Reptilia (vol. 12, pp. 443-481). Academic Press.
McNab, B. K. (2002). The physiological ecology of vertebrates: A view from energetics (pp. 576). Comstock Publishing Associates, Cornell University Press.
Montgomery, S. H., Mundy, N. I., & Barton, R. A. (2016). Brain evolution and development: Adaptation, allometry and constraint. Proceedings of the Royal Society B, 283, 20160433.
Muñoz-Garcia, A., Ro, J., Reichard, J. D., Kunz, T. H., & Williams, J. B. (2012). Cutaneous water loss and lipids of the stratum corneum in two syntopic species of bats. Comparative Biochemistry and Physiology, Part A, 161, 208-215.
Muñoz-Garcia, A., & Williams, J. B. (2005). Cutaneous water loss and lipids of the stratum corneum in house sparrows Passer domesticus from arid and mesic environments. Journal of Experimental Biology, 208, 3689-3700.
Ngo, H. N., Nguyen, T. Q., Phan, T. Q., van Schingen, M., & Ziegler, T. (2019). A case study on trade in threatened tiger geckos (Goniurosaurus) in Vietnam including updated information on the abundance of the endangered G. catbaensis. Nature Conservation, 33, 1-19. https://doi.org/10.3897/natureconservation.32.33590
Nunn, C. L. (2011). The Comparative approach in evolutionary anthropology and biology (pp. 392). Chicago University Press.
Orme, D., Freckleton, R. P., Thomas, G. H., Petzoldt, T., Fritz, S. A., & Isaac, N. (2013). CAPER: Comparative analyses of phylogenetics and evolution in R. Methods in Ecology and Evolution, 3, 145-151.
Oufiero, C. E., Gartner, G. E. A., Adolph, S. C., & Garland, T. J. (2011). Latitudinal and climatic variation in body size and dorsal scale counts in Sceloporus lizards: A phylogenetic perspective. Evolution, 65, 3590-3607. https://doi.org/10.1111/j.1558-5646.2011.01405.x
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877-884. https://doi.org/10.1038/44766
Paradis, E., & Schliep, K. (2018). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528. https://doi.org/10.1093/bioinformatics/bty633
Piras, P., Salvi, D., Ferrara, G., Maiorino, L., Delfino, M., Pedde, L., & Kotsakis, T. (2011). The role of post-natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards. Journal of Evolutionary Biology, 24, 2705-2720. https://doi.org/10.1111/j.1420-9101.2011.02396.x
Revell, L. J. (2009). Size-correction and principal components for interspecific comparative studies. Evolution, 63, 3258-3268. https://doi.org/10.1111/j.1558-5646.2009.00804.x
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57, 591-601. https://doi.org/10.1080/10635150802302427
Roberts, J. B., & Lillywhite, H. B. (1980). Lipid barrier to water exchange in reptile epidermis. Science, 207, 1077-1079. https://doi.org/10.1126/science.207.4435.1077
Sanders, K. L., Malhotra, A., & Thorpe, R. S. (2004). Ecological diversification in a group of Indomalayan pitvipers (Trimeresurus): Convergence in taxonomically important traits has implications for species identification. Journal of Evolutionary Biology, 17, 721-731. https://doi.org/10.1111/j.1420-9101.2004.00735.x
Schmidt-Nielsen, K. (1964). Desert animals: Physiological problems of heat and water. Clarendon.
Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important?. Cambridge University Press.
Seufer, H., Kaverkin, Y., & Kirschner, A. (Eds.) (2005). Die Lidgeckos (pp. 238). Kirschner und Seufer Verlag.
Shoemaker, V. H., & Nagy, K. A. (1977). Osmoregulation in amphibians and reptiles. Annual Review of Physiology, 39, 449-471. https://doi.org/10.1146/annurev.ph.39.030177.002313
Smith, M. A. (1935). The fauna of British India, including Ceylon and Burma, Reptilia and Amphibia-Sauria (pp. 2: Xiii +440). Taylor and Francis.
Soulé, M. (1966). Trends in the insular radiation of a lizard. The American Naturalist, 100, 47-64. https://doi.org/10.1086/282399
Soulé, M., & Kerfoot, W. C. (1972). Climatic determination of scale size in a lizard. Systematic Zoology, 21, 97-105.
Starostová, Z., Kratochvíl, L., & Frynta, D. (2005). Dwarf and giant geckos from the cellular perspective: The bigger the animal, the bigger its erythrocytes? Functional Ecology, 19, 744-749.
Starostová, Z., Kubička, L., Kozlowski, J., Konarzewski, M., & Kratochvíl, L. (2009). Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. The American Naturalist, 174, E100-E105. https://doi.org/10.1086/603610
Tielman, B. I., Williams, J. B., & Bloomer, P. (2003). Adaptation of metabolism and evaporative water loss along an aridity gradient. Proceedings of the Royal Society B, Biological Sciences, 270, 207-214.
Van Sant, M. J., Oufiero, C. E., Muñoz-Gracia, A., Hammond, K. A., & Williams, J. B. (2012). A phylogenetic approach to total evaporative loss in mammals. Physiological and Biochemical Zoology, 85, 526-532.
Wegener, J. E., Gartner, G. E. A., & Losos, J. B. (2014). Lizard scales in an adaptive radiation: Variation in scale number follows climatic and structural habitat diversity in Anolis lizards. Biological Journal of the Linnean Society, 113, 570-579.
West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126. https://doi.org/10.1126/science.276.5309.122
Williams, J. B. (1996). A phylogenetic perspective of evaporative water loss in birds. The Auk, 113, 457-472. https://doi.org/10.2307/4088912
Williams, J. B., Muñoz-Garcia, A., Ostrowski, S., & Tieleman, B. I. (2004). A phylogenetic analysis of basal metabolism, total evaporative water loss, and life-history among foxes from desert and mesic regions. Journal of Comparative Physiology Part B, 174, 29-39. https://doi.org/10.1007/s00360-003-0386-0
Williams, J. B., & Tieleman, B. I. (2000). Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. Journal of Experimental Biology, 203, 3153-3159. https://doi.org/10.1242/jeb.203.20.3153
Withers, P. C., Cooper, C. E., & Larcombe, A. N. (2006). Environmental correlates of physiological variables in marsupials. Physiological and Biochemical Zoology, 79, 437-453. https://doi.org/10.1086/501063
Witmer, L. M. (1995). Homology of facial structures in extant archosaurs (birds and crocodilians), with the special reference to paranasal pneumaticity and nasal conchae. Journal of Morphology, 225, 269-327.
Woods, H. A., & Smith, J. N. (2010). Universal model for water costs of gas exchange by animals and plants. Proceedings of the National Academy of Sciences USA, 107, 8469-8474. https://doi.org/10.1073/pnas.0905185107
Zheng, Y. J., & Wiens, J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94, 537-547.