Growth faltering regardless of chronic diarrhea is associated with mucosal immune dysfunction and microbial dysbiosis in the gut lumen.


Journal

Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742

Informations de publication

Date de publication:
09 2021
Historique:
received: 09 02 2021
accepted: 19 05 2021
revised: 13 05 2021
pubmed: 24 6 2021
medline: 22 1 2022
entrez: 23 6 2021
Statut: ppublish

Résumé

Despite the impact of childhood diarrhea on morbidity and mortality, our understanding of its sequelae has been significantly hampered by the lack of studies that examine samples across the entire intestinal tract. Infant rhesus macaques are naturally susceptible to human enteric pathogens and recapitulate the hallmarks of diarrheal disease such as intestinal inflammation and growth faltering. Here, we examined intestinal biopsies, lamina propria leukocytes, luminal contents, and fecal samples from healthy infants and those experiencing growth faltering with distant acute or chronic active diarrhea. We show that growth faltering in the presence or absence of active diarrhea is associated with a heightened systemic and mucosal pro-inflammatory state centered in the colon. Moreover, polyclonal stimulation of colonic lamina propria leukocytes resulted in a dampened cytokine response, indicative of immune exhaustion. We also detected a functional and taxonomic shift in the luminal microbiome across multiple gut sites including the migration of Streptococcus and Prevotella species between the small and large intestine, suggesting a decompartmentalization of gut microbial communities. Our studies provide valuable insight into the outcomes of diarrheal diseases and growth faltering not attainable in humans and lays the groundwork to test interventions in a controlled and reproducible setting.

Identifiants

pubmed: 34158595
doi: 10.1038/s41385-021-00418-2
pii: S1933-0219(22)00206-9
pmc: PMC8379072
mid: NIHMS1707048
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1113-1126

Subventions

Organisme : NIH HHS
ID : P51 OD011092
Pays : United States
Organisme : NIH HHS
ID : P51 OD011107
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI007319
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI141346
Pays : United States

Informations de copyright

© 2021. The Author(s).

Références

Liu, L. et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388, 3027–3035 (2016).
pubmed: 27839855 pmcid: 5161777 doi: 10.1016/S0140-6736(16)31593-8
Clasen, T. F. et al. Interventions to improve water quality for preventing diarrhoea. Cochrane Database Syst. Rev. 10, CD004794 (2015).
Ferdous, F. et al. Severity of diarrhea and malnutrition among under five-year-old children in rural Bangladesh. Am. J. Trop. Med. Hyg. 89, 223–228 (2013).
pubmed: 23817334 pmcid: 3741240 doi: 10.4269/ajtmh.12-0743
Mata, L. Diarrheal disease as a cause of malnutrition. Am. J. Trop. Med. Hyg. 47, 16–27 (1992).
pubmed: 1632472 doi: 10.4269/ajtmh.1992.47.16
Baqui, A. H. et al. Malnutrition, cell-mediated immune deficiency, and diarrhea: a community-based longitudinal study in rural Bangladeshi children. Am. J. Epidemiol. 137, 355–365 (1993).
pubmed: 8452143 doi: 10.1093/oxfordjournals.aje.a116682
Yip, R. & Sharp, T. W. Acute malnutrition and high childhood mortality related to diarrhea. Lessons from the 1991 Kurdish refugee crisis. JAMA 270, 587–590 (1993).
pubmed: 8331756 doi: 10.1001/jama.1993.03510050053026
Brown, K. H., Khatun, M. & Ahmed, G. Relationship of the xylose absorption status of children in Bangladesh to their absorption of macronutrients from local diets. Am. J. Clin. Nutr. 34, 1540–1547 (1981).
pubmed: 7270477 doi: 10.1093/ajcn/34.8.1540
Manary, M. J. et al. Perturbed zinc homeostasis in rural 3-5-y-old Malawian children is associated with abnormalities in intestinal permeability attributed to tropical enteropathy. Pediatr. Res. 67, 671–675 (2010).
pubmed: 20496476 doi: 10.1203/PDR.0b013e3181da44dc
Campbell, D. I., Elia, M. & Lunn, P. G. Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J. Nutr. 133, 1332–1338 (2003).
pubmed: 12730419 doi: 10.1093/jn/133.5.1332
Ngure, F. M. et al. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links. Ann. N. Y. Acad. Sci. 1308, 118–128 (2014).
pubmed: 24571214 doi: 10.1111/nyas.12330
John, C. C., Black, M. M. & Nelson, C. A. Neurodevelopment: the impact of nutrition and inflammation during early to middle childhood in low-resource settings. Pediatrics 139, S59–S71 (2017).
pubmed: 28562249 doi: 10.1542/peds.2016-2828H
Czerkinsky, C. & Holmgren, J. Vaccines against enteric infections for the developing world. Philos. Trans. R. Soc. Lond. B 370, 20150142 (2015).
Moore, S. R. et al. Prolonged episodes of acute diarrhea reduce growth and increase risk of persistent diarrhea in children. Gastroenterology 139, 1156–1164 (2010).
pubmed: 20638937 doi: 10.1053/j.gastro.2010.05.076
Guerrant, R. L., Oria, R. B., Moore, S. R., Oria, M. O. & Lima, A. A. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr. Rev. 66, 487–505 (2008).
pubmed: 18752473 doi: 10.1111/j.1753-4887.2008.00082.x
McCormick, B. J. J. & Lang, D. R. Diarrheal disease and enteric infections in LMIC communities: how big is the problem? Trop. Dis. Travel Med. Vaccines 2, 11 (2016).
pubmed: 28883955 pmcid: 5531018 doi: 10.1186/s40794-016-0028-7
Rouhani, S. et al. Gut microbiota features associated with Campylobacter burden and postnatal linear growth deficits in a Peruvian birth cohort. Clin. Infect. Dis. 71, 1000–1007 (2019).
Rogawski, E. T. et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob. Health 6, e1319–e1328 (2018).
pubmed: 30287125 pmcid: 6227248 doi: 10.1016/S2214-109X(18)30351-6
Schaible, U. E. & Kaufmann, S. H. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med. 4, e115 (2007).
pubmed: 17472433 pmcid: 1858706 doi: 10.1371/journal.pmed.0040115
Platts-Mills, J. A. et al. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob. Health 3, e564–e575 (2015).
pubmed: 26202075 pmcid: 7328884 doi: 10.1016/S2214-109X(15)00151-5
Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).
pubmed: 23680352 doi: 10.1016/S0140-6736(13)60844-2
Lee, G. et al. Symptomatic and asymptomatic Campylobacter infections associated with reduced growth in Peruvian children. PLoS Negl. Trop. Dis. 7, e2036 (2013).
pubmed: 23383356 pmcid: 3561130 doi: 10.1371/journal.pntd.0002036
Kotloff, K. L. et al. The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: epidemiologic and clinical methods of the case/control study. Clin. Infect. Dis. 55, S232–S245 (2012).
pubmed: 23169936 pmcid: 3502307 doi: 10.1093/cid/cis753
Peeling, R. W., Smith, P. G. & Bossuyt, P. M. A guide for diagnostic evaluations. Nat. Rev. Microbiol. 4, S2–S6 (2006).
pubmed: 17110921 doi: 10.1038/nrmicro1522
Platts-Mills, J. A. et al. Detection of Campylobacter in stool and determination of significance by culture, enzyme immunoassay, and PCR in developing countries. J. Clin. Microbiol. 52, 1074–1080 (2014).
pubmed: 24452175 pmcid: 3993515 doi: 10.1128/JCM.02935-13
Bian, X. et al. Campylobacter abundance in breastfed infants and identification of a new species in the global enterics multicenter study. mSphere 5, e00735-19 (2020).
Francois, R. et al. The other Campylobacters: not innocent bystanders in endemic diarrhea and dysentery in children in low-income settings. PLoS Negl. Trop. Dis. 12, e0006200 (2018).
pubmed: 29415075 pmcid: 5819825 doi: 10.1371/journal.pntd.0006200
Yu, J. et al. Environmental enteric dysfunction includes a broad spectrum of inflammatory responses and epithelial repair processes. Cell Mol. Gastroenterol. Hepatol. 2, 158–174 e151 (2016).
pubmed: 26973864 doi: 10.1016/j.jcmgh.2015.12.002
Rouhani, S. et al. Diarrhea as a potential cause and consequence of reduced gut microbial diversity among undernourished children in Peru. Clin. Infect. Dis. 71, 989–999 (2020).
pubmed: 31773127 doi: 10.1093/cid/ciz905
Rhoades, N. et al. Maturation of the infant rhesus macaque gut microbiome and its role in the development of diarrheal disease. Genome Biol. 20, 173 (2019).
pubmed: 31451108 pmcid: 6709555 doi: 10.1186/s13059-019-1789-x
Pop, M. et al. Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. Genome Biol. 15, R76 (2014).
pubmed: 24995464 pmcid: 4072981 doi: 10.1186/gb-2014-15-6-r76
Gough, E. K. et al. Linear growth faltering in infants is associated with Acidaminococcus sp. and community-level changes in the gut microbiota. Microbiome 3, 24 (2015).
pubmed: 26106478 pmcid: 4477476 doi: 10.1186/s40168-015-0089-2
Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).
pubmed: 4189846 pmcid: 4189846 doi: 10.1038/nature13421
Vonaesch, P. et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc. Natl Acad. Sci. USA 115, E8489–E8498 (2018).
pubmed: 30126990 pmcid: 6130352 doi: 10.1073/pnas.1806573115
Rouhani, S. et al. Diarrhea as a potential cause and consequence of reduced gut microbial diversity among undernourished children in Peru. Clin. Infect. Dis. 71, 989–999 (2019).
Gallardo, P. et al. Distinctive gut microbiota is associated with diarrheagenic Escherichia coli infections in Chilean children. Front. Cell Infect. Microbiol. 7, 424 (2017).
pubmed: 29075617 pmcid: 5643428 doi: 10.3389/fcimb.2017.00424
Prongay, K., Park, B. & Murphy, S. J. Risk factor analysis may provide clues to diarrhea prevention in outdoor-housed rhesus macaques (Macaca mulatta). Am. J. Primatol. 75, 872–882 (2013).
pubmed: 23568382 pmcid: 3956043 doi: 10.1002/ajp.22150
Haertel, A. J., Prongay, K., Gao, L., Gottlieb, D. H. & Park, B. Standard growth and diarrhea-associated growth faltering in captive infant rhesus macaques (Macaca mulatta). Am. J. Primatol. 80, e22923 (2018).
pubmed: 30281825 pmcid: 6405262 doi: 10.1002/ajp.22923
Quintel, B. K. et al. Vaccine-mediated protection against Campylobacter-associated enteric disease. Sci. Adv. 6, eaba4511 (2020).
pubmed: 32637610 pmcid: 7314533 doi: 10.1126/sciadv.aba4511
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
pubmed: 25977477 pmcid: 4484387 doi: 10.1101/gr.186072.114
Briend, A. Is diarrhoea a major cause of malnutrition among the under-fives in developing countries? A review of available evidence. Eur. J. Clin. Nutr. 44, 611–628 (1990).
pubmed: 2261894
Checkley, W. et al. Multi-country analysis of the effects of diarrhoea on childhood stunting. Int. J. Epidemiol. 37, 816–830 (2008).
pubmed: 18567626 pmcid: 2734063 doi: 10.1093/ije/dyn099
Zhang, R. X. et al. Primary tumor location as a predictor of the benefit of palliative resection for colorectal cancer with unresectable metastasis. World J. Surg. Oncol. 15, 138 (2017).
pubmed: 28750680 pmcid: 5530936 doi: 10.1186/s12957-017-1198-0
Kaonga, P. et al. Direct biomarkers of microbial translocation correlate with immune activation in adult Zambians with environmental enteropathy and Hepatosplenic Schistosomiasis. Am. J. Trop. Med Hyg. 97, 1603–1610 (2017).
pubmed: 29140241 pmcid: 5817780 doi: 10.4269/ajtmh.17-0365
Lommatzsch, M. et al. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. Am. J. Pathol. 155, 1183–1193 (1999).
pubmed: 10514401 pmcid: 1867012 doi: 10.1016/S0002-9440(10)65221-2
Wang, P. et al. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit. Sci. Rep. 6, 20320 (2016).
pubmed: 26837784 pmcid: 4738267 doi: 10.1038/srep20320
Yu, Y. B. et al. BDNF modulates intestinal barrier integrity through regulating the expression of tight junction proteins. Neurogastroenterol. Motil 29, e12967 (2017).
Joo, Y. E. Increased expression of brain-derived neurotrophic factor in irritable bowel syndrome and its correlation with abdominal pain (Gut 2012;61:685-694). J. Neurogastroenterol. Motil. 19, 109–111 (2013).
pubmed: 23350058 pmcid: 3548116 doi: 10.5056/jnm.2013.19.1.109
Jiang, N. M. et al. Febrile illness and pro-inflammatory cytokines are associated with lower neurodevelopmental scores in Bangladeshi infants living in poverty. BMC Pediatr. 14, 50 (2014).
pubmed: 24548288 pmcid: 3936797 doi: 10.1186/1471-2431-14-50
Marie, C., Ali, A., Chandwe, K., Petri, W. A. Jr & Kelly, P. Pathophysiology of environmental enteric dysfunction and its impact on oral vaccine efficacy. Mucosal Immunol. 11, 1290–1298 (2018).
pubmed: 29988114 doi: 10.1038/s41385-018-0036-1
Bell, S. J. et al. Migration and maturation of human colonic dendritic cells. J. Immunol. 166, 4958–4967 (2001).
pubmed: 11290774 doi: 10.4049/jimmunol.166.8.4958
Taniuchi, M. et al. Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants. Vaccine 34, 3068–3075 (2016).
pubmed: 27154394 pmcid: 4912219 doi: 10.1016/j.vaccine.2016.04.080
Naylor, C. et al. Environmental enteropathy, oral vaccine failure and growth faltering in infants in Bangladesh. EBioMedicine 2, 1759–1766 (2015).
pubmed: 26870801 pmcid: 4740306 doi: 10.1016/j.ebiom.2015.09.036
Salvador, P. et al. CD16+ macrophages mediate fibrosis in inflammatory bowel disease. J. Crohns Colitis 12, 589–599 (2018).
pubmed: 29304229 doi: 10.1093/ecco-jcc/jjx185
Tauschmann, M. et al. Distribution of CD4(pos) -, CD8(pos) - and regulatory T cells in the upper and lower gastrointestinal tract in healthy young subjects. PLoS ONE 8, e80362 (2013).
pubmed: 24265815 pmcid: 3827200 doi: 10.1371/journal.pone.0080362
Gad, M., Brimnes, J. & Claesson, M. H. CD4+ T regulatory cells from the colonic lamina propria of normal mice inhibit proliferation of enterobacteria-reactive, disease-inducing Th1-cells from SCID mice with colitis. Clin. Exp. Immunol. 131, 34–40 (2003).
pubmed: 12519383 pmcid: 1808604 doi: 10.1046/j.1365-2249.2003.02049.x
Yu, X. et al. Intestinal Lamina Propria CD4(+) T cells promote bactericidal activity of macrophages via Galectin-9 and Tim-3 Interaction during Salmonella enterica Serovar Typhimurium Infection. Infect. Immun. 86, e00769-17 (2018).
Thome, J. J. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).
pubmed: 26657141 doi: 10.1038/nm.4008
Zens, K. D., Connors, T. & Farber, D. L. Tissue compartmentalization of T cell responses during early life. Semin. Immunopathol. 39, 593–604 (2017).
pubmed: 28894935 pmcid: 5743209 doi: 10.1007/s00281-017-0648-7
Immunological Genome, P. ImmGen at 15. Nat. Immunol. 21, 700–703 (2020).
doi: 10.1038/s41590-020-0687-4
Mathan, M. M. & Mathan, V. I. Rectal mucosal morphologic abnormalities in normal subjects in southern India: a tropical colonopathy? Gut 26, 710–717 (1985).
pubmed: 4018635 pmcid: 1433018 doi: 10.1136/gut.26.7.710
Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).
pubmed: 25732063 pmcid: 4369771 doi: 10.1016/j.chom.2015.01.015
Griffen, A. L. et al. CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS ONE 6, e19051 (2011).
pubmed: 21544197 pmcid: 3081323 doi: 10.1371/journal.pone.0019051
Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).
pubmed: 24917457 doi: 10.1038/mi.2014.44
Sun, M. et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9, 3555 (2018).
pubmed: 30177845 pmcid: 6120873 doi: 10.1038/s41467-018-05901-2
Luhrs, H. et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 37, 458–466 (2002).
pubmed: 11989838 doi: 10.1080/003655202317316105
Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 47, 397–403 (2000).
pubmed: 10940278 pmcid: 1728045 doi: 10.1136/gut.47.3.397
Rocha-Ramirez, L. M. et al. Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages. J. Immunol. Res. 2017, 4607491 (2017).
pubmed: 28758133 pmcid: 5516745 doi: 10.1155/2017/4607491
Udayan, S. et al. Macrophage cytokine responses to commensal Gram-positive Lactobacillus salivarius strains are TLR2-independent and Myd88-dependent. Sci. Rep. 11, 5896 (2021).
pubmed: 33723368 pmcid: 7961041 doi: 10.1038/s41598-021-85347-7
Pinacchio, C. et al. High abundance of genus Prevotella is associated with dysregulation of IFN-I and T cell response in HIV-1-infected patients. AIDS 34, 1467–1473 (2020).
pubmed: 32675560 doi: 10.1097/QAD.0000000000002574
Rhoades, N. et al. Altered immunity and microbial dysbiosis in aged individuals with long-term controlled HIV infection. Front. Immunol. 10, 463 (2019).
Iljazovic, A. et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 14, 113–124 (2021)
Tett, A. et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 26, 666–679 e667 (2019).
pubmed: 31607556 pmcid: 6854460 doi: 10.1016/j.chom.2019.08.018
Gupta, V. K., Paul, S. & Dutta, C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8, 1162 (2017).
pubmed: 28690602 pmcid: 5481955 doi: 10.3389/fmicb.2017.01162
Amour, C. et al. Epidemiology and impact of campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin. Infect. Dis. 63, 1171–1179 (2016).
pubmed: 27501842 pmcid: 5064165
Lindenbaum, J., Harmon, J. W. & Gerson, C. D. Subclinical malabsorption in developing countries. Am. J. Clin. Nutr. 25, 1056–1061 (1972).
pubmed: 4562265 doi: 10.1093/ajcn/25.10.1056
Korczak, B. M. et al. Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int. J. Syst. Evol. Microbiol. 56, 937–945 (2006).
pubmed: 16627635 doi: 10.1099/ijs.0.64109-0
Doan, T. et al. Gut microbiome alteration in MORDOR I: a community-randomized trial of mass azithromycin distribution. Nat. Med. 25, 1370–1376 (2019).
pubmed: 31406349 doi: 10.1038/s41591-019-0533-0
Tickell, K. D., Atlas, H. E. & Walson, J. L. Environmental enteric dysfunction: a review of potential mechanisms, consequences and management strategies. BMC Med. 17, 181 (2019).
pubmed: 31760941 pmcid: 6876067 doi: 10.1186/s12916-019-1417-3
Keenan, J. D. et al. Azithromycin to reduce childhood mortality in sub-Saharan Africa. N. Engl. J. Med. 378, 1583–1592 (2018).
pubmed: 29694816 pmcid: 5849140 doi: 10.1056/NEJMoa1715474
Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).
Galpin, L. et al. Effect of Lactobacillus GG on intestinal integrity in Malawian children at risk of tropical enteropathy. Am. J. Clin. Nutr. 82, 1040–1045 (2005).
pubmed: 16280436 doi: 10.1093/ajcn/82.5.1040
Barr, T. et al. Chronic ethanol consumption alters lamina propria leukocyte response to stimulation in a region-dependent manner. FASEB J. 33, 7767–7777 (2019).
pubmed: 30897342 pmcid: 6529332 doi: 10.1096/fj.201802780R
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616
Tripathi, S. et al. Meta- and orthogonal integration of Influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).
pubmed: 26651948 pmcid: 4829074 doi: 10.1016/j.chom.2015.11.002
Frishberg, A., Brodt, A., Steuerman, Y. & Gat-Viks, I. ImmQuant: a user-friendly tool for inferring immune cell-type composition from gene-expression data. Bioinformatics 32, 3842–3843 (2016).
pubmed: 27531105 pmcid: 5167062 doi: 10.1093/bioinformatics/btw535
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
pubmed: 26271760 doi: 10.1111/1462-2920.13023
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37, 852–857 (2019).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 4927377 pmcid: 4927377 doi: 10.1038/nmeth.3869
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690 pmcid: 23329690 doi: 10.1093/molbev/mst010
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
pubmed: 20224823 pmcid: 2835736 doi: 10.1371/journal.pone.0009490
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
pubmed: 29773078 pmcid: 5956843 doi: 10.1186/s40168-018-0470-z
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283 doi: 10.1093/nar/gks1219
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).
pubmed: 20827291 doi: 10.1038/ismej.2010.133
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 4103590 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 3322381 pmcid: 3322381 doi: 10.1038/nmeth.1923
Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358 (2012).
pubmed: 22719234 pmcid: 3374609 doi: 10.1371/journal.pcbi.1002358
Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).
Karp, P. D., Riley, M., Paley, S. M. & Pellegrini-Toole, A. The MetaCyc database. Nucleic Acids Res. 30, 59–61 (2002).
pubmed: 11752254 pmcid: 99148 doi: 10.1093/nar/30.1.59
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
pubmed: 21702898 pmcid: 3218848 doi: 10.1186/gb-2011-12-6-r60
Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).
pubmed: 22688413 pmcid: 3443552 doi: 10.1038/nmeth.2066
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput Biol. 19, 455–477 (2012).
pubmed: 22506599 pmcid: 3342519 doi: 10.1089/cmb.2012.0021
Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
pubmed: 26336640 pmcid: 4556158 doi: 10.7717/peerj.1165
Wattam, A. R. et al. Assembly, annotation, and comparative genomics in PATRIC, the all bacterial bioinformatics resource center. Methods Mol. Biol. 1704, 79–101 (2018).
pubmed: 29277864 doi: 10.1007/978-1-4939-7463-4_4
Oksanen, J. et al. R package “vegan”: Community Ecology Package. (Version 2.5-7),  https://CRAN.R-project.org/package=vegan (2020).
Harrell, F. et al. R package “Hmisc”: Harrell Miscellaneous. (Version 4.5.0), https://github.com/harrelfe/Hmisc/ (2021).
Wei, T., Simko, V. R package “corrplot”: Visualization of a Correlation Matrix. (Version 0.89),  https://github.com/taiyun/corrplot (2021).

Auteurs

Nicholas S Rhoades (NS)

Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.

Sara M Hendrickson (SM)

Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA.

Kamm Prongay (K)

Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA.

Andrew Haertel (A)

Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA.

Leanne Gill (L)

California National Primate Research Center, Davis, Davis, CA, USA.

Robert A Edwards (RA)

Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.

Laura Garzel (L)

California National Primate Research Center, Davis, Davis, CA, USA.

Mark K Slifka (MK)

Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA.

Ilhem Messaoudi (I)

Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA. imessaou@uci.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
1.00
Humans Female Sick Leave Norway Sinusitis

Classifications MeSH