Germline ATG2B/GSKIP-containing 14q32 duplication predisposes to early clonal hematopoiesis leading to myeloid neoplasms.
Adolescent
Adult
Aged
Autophagy-Related Proteins
/ genetics
Biomarkers, Tumor
/ genetics
Case-Control Studies
Chromosomes, Human, Pair 14
/ genetics
Clonal Hematopoiesis
DNA Copy Number Variations
Disease Susceptibility
Female
Follow-Up Studies
Gene Duplication
Germ Cells
Humans
Leukemia, Myeloid, Acute
/ genetics
Male
Middle Aged
Mutation
Myelodysplastic Syndromes
/ genetics
Myeloproliferative Disorders
/ genetics
Prognosis
Repressor Proteins
/ genetics
Retrospective Studies
Survival Rate
Vesicular Transport Proteins
/ genetics
Young Adult
Journal
Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
received:
01
03
2021
accepted:
02
06
2021
revised:
26
05
2021
pubmed:
27
6
2021
medline:
19
2
2022
entrez:
26
6
2021
Statut:
ppublish
Résumé
The germline predisposition associated with the autosomal dominant inheritance of the 14q32 duplication implicating ATG2B/GSKIP genes is characterized by a wide clinical spectrum of myeloid neoplasms. We analyzed 12 asymptomatic carriers and 52 patients aged 18-74 years from six families, by targeted sequencing of 41 genes commonly mutated in myeloid malignancies. We found that 75% of healthy carriers displayed early clonal hematopoiesis mainly driven by TET2 mutations. Molecular landscapes of patients revealed two distinct routes of clonal expansion and leukemogenesis. The first route is characterized by the clonal dominance of myeloproliferative neoplasms (MPN)-driver events associated with TET2 mutations in half of cases and mutations affecting splicing and/or the RAS pathway in one-third of cases, leading to the early development of MPN, mostly essential thrombocythemia, with a high risk of transformation (50% after 10 years). The second route is distinguished by the absence of MPN-driver mutations and leads to AML without prior MPN. These patients mostly harbored a genomic landscape specific to acute myeloid leukemia secondary to myelodysplastic syndrome. An unexpected result was the total absence of DNMT3A mutations in this cohort. Our results suggest that the germline duplication constitutively mimics hematopoiesis aging by favoring TET2 clonal hematopoiesis.
Identifiants
pubmed: 34172895
doi: 10.1038/s41375-021-01319-w
pii: 10.1038/s41375-021-01319-w
doi:
Substances chimiques
ATG2B protein, human
0
Autophagy-Related Proteins
0
Biomarkers, Tumor
0
GSKIP protein, human
0
Repressor Proteins
0
Vesicular Transport Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
126-137Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Babushok DV, Bessler M, Olson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma. 2016;57:520–36.
pubmed: 26693794
doi: 10.3109/10428194.2015.1115041
Churpek JE. Familial myelodysplastic syndrome/acute myeloid leukemia. Best Pr Res Clin Haematol. 2017;30:287–9.
doi: 10.1016/j.beha.2017.10.002
Tawana K, Wang J, Renneville A, Bödör C, Hills R, Loveday C, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015;126:1214–23. 3
pubmed: 26162409
doi: 10.1182/blood-2015-05-647172
Rio-Machin A, Vulliamy T, Hug N, Walne A, Tawana K, Cardoso S, et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun. 2020;11:1044. 25
pubmed: 32098966
pmcid: 7042299
doi: 10.1038/s41467-020-14829-5
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405. 19
pubmed: 27069254
doi: 10.1182/blood-2016-03-643544
Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133:1071–85. 07
pubmed: 30670445
pmcid: 6405331
doi: 10.1182/blood-2018-10-844662
Bluteau O, Sebert M, Leblanc T, Peffault de Latour R, Quentin S, Lainey E, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018;131:717–32. 15
pubmed: 29146883
doi: 10.1182/blood-2017-09-806489
Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112:2199–204. 15
pubmed: 18451307
pmcid: 2532797
doi: 10.1182/blood-2008-03-143602
Sud A, Chattopadhyay S, Thomsen H, Sundquist K, Sundquist J, Houlston RS, et al. Familial risks of acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms. Blood. 2018;132:973–6. 30
pubmed: 29991558
pmcid: 6194341
doi: 10.1182/blood-2018-06-858597
Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C, et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood. 2006;108:346–52. 1
pubmed: 16537803
doi: 10.1182/blood-2005-12-4852
Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L, Vanelli L, et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J Clin Oncol. 2007;25:5630–5. 2007/11/12 ed
pubmed: 17998545
doi: 10.1200/JCO.2007.12.6896
Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood. 2003;102:3793–6. 15
pubmed: 12829587
doi: 10.1182/blood-2003-03-0885
Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C, et al. Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood. 2009;114:1628–32.
Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41:450–4. 2009/03/15 ed
pubmed: 19287385
doi: 10.1038/ng.341
Jäger R, Harutyunyan AS, Rumi E, Pietra D, Berg T, Olcaydu D. et al. Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. Am J Hematol. 2014;89:1107–10.
pubmed: 25196853
pmcid: 4657470
doi: 10.1002/ajh.23842
Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015 Apr;6:6691.
Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128:1121–8. 25
pubmed: 27365426
pmcid: 5085254
doi: 10.1182/blood-2015-06-652941
Bao EL, Nandakumar SK, Liao X, Bick AG, Karjalainen J, Tabaka M, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature. 2020;586:769–75. 2020/10/16 ed
pubmed: 33057200
pmcid: 7606745
doi: 10.1038/s41586-020-2786-7
Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586:763–8. 2020/10/16 ed
pubmed: 33057201
pmcid: 7944936
doi: 10.1038/s41586-020-2819-2
Olcaydu D, Rumi E, Harutyunyan A, Passamonti F, Pietra D, Pascutto C, et al. The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica. 2011;96:367–74. 2010/12/20 ed
pubmed: 21173100
doi: 10.3324/haematol.2010.034488
Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115:2003–7. 2010/01/08 ed
pubmed: 20061559
doi: 10.1182/blood-2009-09-245381
Harutyunyan AS, Giambruno R, Krendl C, Stukalov A, Klampfl T, Berg T, et al. Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood. 2016;127:362–5. 2015/11/16 ed
pubmed: 26574608
pmcid: 5043418
doi: 10.1182/blood-2015-09-668673
Rumi E, Harutyunyan AS, Pietra D, Feenstra JDM, Cavalloni C, Roncoroni E, et al. LNK mutations in familial myeloproliferative neoplasms. Blood. 2016;128:144–5. 7
pubmed: 27216218
doi: 10.1182/blood-2016-04-711150
Loscocco GG, Mannarelli C, Pacilli A, Fanelli T, Rotunno G, Gesullo F, et al. Germline transmission of LNKE208Q variant in a family with myeloproliferative neoplasms. Am J Hematol. 2016;91:E356.
pubmed: 27237057
doi: 10.1002/ajh.24437
Hirvonen EAM, Pitkänen E, Hemminki K, Aaltonen LA, Kilpivaara O. Whole-exome sequencing identifies novel candidate predisposition genes for familial polycythemia vera. Hum Genomics. 2017;11:6. 20
pubmed: 28427458
pmcid: 5397753
doi: 10.1186/s40246-017-0102-x
Saliba J, Saint-Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47:1131–40.
pubmed: 26280900
doi: 10.1038/ng.3380
Hahn CN, Wee A, Babic M, Feng J, Wang P, Kutyna MM, et al. Duplication on chromosome 14q Identified In familial predisposition to myeloid malignancies and myeloproliferative neoplasms. Blood. 2017;130:492.
Babushok DV, Stanley NL, Morrissette JJD, Lieberman DB, Olson TS, Chou ST, et al. Germline duplication of ATG2B and GSKIP genes is not required for the familial myeloid malignancy syndrome associated with the duplication of chromosome 14q32. Leukemia. 2018;32:2720–3.
pubmed: 30087419
pmcid: 6301065
doi: 10.1038/s41375-018-0231-9
Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–7. 15
pubmed: 17488875
doi: 10.1182/blood-2007-04-083501
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47. 26
pubmed: 27895058
pmcid: 5291965
doi: 10.1182/blood-2016-08-733196
Guermouche H, Ravalet N, Gallay N, Deswarte C, Foucault A, Beaud J, et al. High prevalence of clonal hematopoiesis in the blood and bone marrow of healthy volunteers. Blood Adv. 2020;4:3550–7.
pubmed: 32761230
pmcid: 7422125
doi: 10.1182/bloodadvances.2020001582
Besson C, Gonin C, Brebion A, Delaunay C, Panelatti G, Plumelle Y. Incidence of hematological malignancies in Martinique, French West Indies, overrepresentation of multiple myeloma and adult T cell leukemia/lymphoma. Leukemia. 2001;15:828–31.
pubmed: 11368445
doi: 10.1038/sj.leu.2402040
Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.
pubmed: 26376137
doi: 10.1056/NEJMra1406184
Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90. 2013/12/10 ed
pubmed: 24325356
doi: 10.1056/NEJMoa1311347
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405. 2013/12/10 ed
pubmed: 24325359
pmcid: 3966280
doi: 10.1056/NEJMoa1312542
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.
pubmed: 27276561
pmcid: 4979995
doi: 10.1056/NEJMoa1516192
Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30. 11
pubmed: 30304655
pmcid: 7030948
doi: 10.1056/NEJMoa1716614
Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76. 2014/12/30 ed
pubmed: 25550361
pmcid: 4342352
doi: 10.1182/blood-2014-11-610543
Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87. 2014/11/27 ed25
pubmed: 25426838
pmcid: 4290021
doi: 10.1056/NEJMoa1409405
Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98. 2014/11/26 ed
pubmed: 25426837
pmcid: 4306669
doi: 10.1056/NEJMoa1408617
Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8. 2014/10/20 ed
pubmed: 25326804
pmcid: 4313872
doi: 10.1038/nm.3733
Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lépine G, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130:753–62. 2017/06/29 ed10
pubmed: 28655780
doi: 10.1182/blood-2017-04-777029
Bellanné-Chantelot C, Rabadan Moraes G, Schmaltz-Panneau B, Marty C, Vainchenker W, Plo I. Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Rev. 2020;42:100710.
pubmed: 32532454
doi: 10.1016/j.blre.2020.100710
Cazzola M. Myelodysplastic syndromes. Longo DL, editor. N Engl J Med. 2020;383:1358–74.
Passamonti F, Rumi E, Arcaini L, Boveri E, Elena C, Pietra D, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93:1645–51.
pubmed: 18790799
doi: 10.3324/haematol.13346
Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30. 29
pubmed: 29296692
pmcid: 5744051
doi: 10.1182/bloodadvances.2016000216
Luque Paz D, Jouanneau-Courville R, Riou J, Ianotto JC, Boyer F, Chauveau A, et al. Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv. 2020;4:4887–97. 2020/10/10 ed13
pubmed: 33035330
pmcid: 7556129
doi: 10.1182/bloodadvances.2020002271
Pegliasco J, Schmaltz-Panneau B, Martin J-E, Chraibi S, Khalife-Hachem S, Salviat F, et al. ATG2B/GSKIP in de novo acute myeloid leukemia (AML): high prevalence of germline predisposition in French West Indies. Leuk Lymphoma. 2021;7:1–8.
Eisfeld A-K, Kohlschmidt J, Mims A, Nicolet D, Walker CJ, Blachly JS, et al. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 years. Leukemia 2020;34:3215–27.
pubmed: 32461631
pmcid: 7882079
doi: 10.1038/s41375-020-0872-3
Sébert M, Passet M, Raimbault A, Rahmé R, Raffoux E, Sicre de Fontbrune F, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134:1441–4. 24
pubmed: 31484648
doi: 10.1182/blood.2019000909
Brown AL, Arts P, Carmichael CL, Babic M, Dobbins J, Chong C-E, et al. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv. 2020;4:1131–44. 24
pubmed: 32208489
pmcid: 7094007
doi: 10.1182/bloodadvances.2019000901
Challen GA, Goodell MA. Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood. 2020;136:1590–8. 1
pubmed: 32746453
pmcid: 7530644
Ostrander EL, Kramer AC, Mallaney C, Celik H, Koh WK, Fairchild J, et al. Divergent effects of dnmt3a and tet2 mutations on hematopoietic progenitor cell fitness. Stem Cell Rep. 2020;14:551–60. 2020/03/30 ed14
doi: 10.1016/j.stemcr.2020.02.011
Izzo F, Lee SC, Poran A, Chaligne R, Gaiti F, Gross B, et al. DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat Genet. 2020;52:378–87.
pubmed: 32203468
pmcid: 7216752
doi: 10.1038/s41588-020-0595-4
López-Moyado IF, Rao A. DNMT3A and TET2 mutations reshape hematopoiesis in opposing ways. Nat Genet. 2020;52:554–6.
pubmed: 32504054
doi: 10.1038/s41588-020-0641-2
Buscarlet M, Provost S, Zada YF, Bourgoin V, Mollica L, Dubé MP, et al. Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood. 2018;132:277–80. 2018/05/17 ed19
pubmed: 29764839
doi: 10.1182/blood-2018-01-829937
Abegunde SO, Buckstein R, Wells RA, Rauh MJ. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp Hematol. 2018;59:60–5.
pubmed: 29195897
doi: 10.1016/j.exphem.2017.11.002
Cai Z, Kotzin JJ, Ramdas B, Chen S, Nelanuthala S, Palam LR, et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell. 2018;23:833–.e5. 06
pubmed: 30526882
pmcid: 6317370
doi: 10.1016/j.stem.2018.10.013
Meisel M, Hinterleitner R, Pacis A, Chen L, Earley ZM, Mayassi T, et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature. 2018;557:580–4.
pubmed: 29769727
pmcid: 6238954
doi: 10.1038/s41586-018-0125-z
Zhang CRC, Nix D, Gregory M, Ciorba MA, Ostrander EL, Newberry RD, et al. Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp Hematol. 2019;80:36–41.e3.
pubmed: 31812712
pmcid: 7031927
doi: 10.1016/j.exphem.2019.11.008
Sanders MA, Chew E, Flensburg C, Zeilemaker A, Miller SE, Al Hinai AS, et al. MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood. 2018;132:1526–34. 4
pubmed: 30049810
pmcid: 6172562
doi: 10.1182/blood-2018-05-852566