Flavivirus integrations in Aedes aegypti are limited and highly conserved across samples from different geographic regions unlike integrations in Aedes albopictus.
Aedes
Arbovirus
Endogenous viral element
Flavivirus
Mosquito
Journal
Parasites & vectors
ISSN: 1756-3305
Titre abrégé: Parasit Vectors
Pays: England
ID NLM: 101462774
Informations de publication
Date de publication:
26 Jun 2021
26 Jun 2021
Historique:
received:
02
12
2020
accepted:
07
06
2021
entrez:
27
6
2021
pubmed:
28
6
2021
medline:
13
10
2021
Statut:
epublish
Résumé
Mosquitoes of the genus Aedes are the main vectors of many viruses, e.g. dengue and Zika, which affect millions of people each year and for which there are limited treatment options. Understanding how Aedes mosquitoes tolerate high viral loads may lead to better disease control strategies. Elucidating endogenous viral elements (EVEs) within vector genomes may give exploitable biological insights. Previous studies have reported the presence of a large number of EVEs in Aedes genomes. Here we investigated if flavivirus EVEs are conserved across populations and different Aedes species by using ~ 500 whole genome sequence libraries from Aedes aegypti and Aedes albopictus, sourced from colonies and field mosquitoes across continents. We found that nearly all flavivirus EVEs in the Ae. aegypti reference genome originate from four separate putative viral integration events, and that they are highly conserved across geographically diverse samples. By contrast, flavivirus EVEs in the Ae. albopictus reference genome originate from up to nine distinct integration events and show low levels of conservation, even within samples from narrow geographical ranges. Our analysis suggests that flaviviruses integrated as long sequences and were subsequently fragmented and shuffled by transposable elements. Given that EVEs of Ae. aegypti and Ae. albopictus belong to different phylogenetic clades and have very differing levels of conservation, they may have different evolutionary origins and potentially different functional roles.
Identifiants
pubmed: 34174947
doi: 10.1186/s13071-021-04828-w
pii: 10.1186/s13071-021-04828-w
pmc: PMC8235865
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
332Subventions
Organisme : Medical Research Council
ID : MR/M01360X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N010469/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K000551/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R020973/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R013063/1
Pays : United Kingdom
Références
Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J, et al. Globe-trotting Aedes aegypti and Aedes albopictus: risk factors for arbovirus pandemics. Vector-Borne Zoonotic Dis. 2020;20(2):71–81.
pubmed: 31556813
pmcid: 7041325
Samy AM, Elaagip AH, Kenawy MA, Ayres CFJ, Peterson AT, Soliman DE. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS ONE. 2016;11(10):e0163863.
pubmed: 27695107
pmcid: 5047650
Dickens BL, Sun H, Jit M, Cook AR, Carrasco LR. Determining environmental and anthropogenic factors which explain the global distribution of Aedes aegypti and Ae. Albopictus. BMJ Glob Health. 2018. https://doi.org/10.1136/bmjgh-2018-000801 .
doi: 10.1136/bmjgh-2018-000801
pubmed: 30233829
pmcid: 6135425
Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. Elife. 2015;4:e08347.
pubmed: 26126267
pmcid: 26126267
Houé V, Bonizzoni M, Failloux A-B. Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence. Emerg Microbes Infect. 2019;8:542–55.
pubmed: 30938223
pmcid: 6455143
Mongelli V, Saleh M-C. Bugs are not to be silenced: small RNA pathways and antiviral responses in insects. Annu Rev Virol. 2016;3:573–89.
pubmed: 27741406
Blair CD, Olson KE. The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses. 2015;7(2):820–43.
pubmed: 25690800
pmcid: 4353918
Lambrechts L, Saleh MC. Manipulating mosquito tolerance for arbovirus control. Cell Host Microbe. 2019. https://doi.org/10.1016/j.chom.2019.08.005 .
doi: 10.1016/j.chom.2019.08.005
pubmed: 31513769
Rosendo Machado S, van der Most T, Miesen P. Genetic determinants of antiviral immunity in dipteran insects—compiling the experimental evidence. Dev Comp Immunol. 2021;119:104010.
pubmed: 33476667
Suzuki Y, Baidaliuk A, Miesen P, Frangeul L, Crist AB, Merkling SH, et al. Non-retroviral endogenous viral element limits cognate virus replication in Aedes aegypti ovaries. Curr Biol. 2020;30(18):3495–506.
pubmed: 32679098
pmcid: 7522710
Palatini U, Miesen P, Carballar-Lejarazu R, Ometto L, Rizzo E, Tu Z, et al. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genom. 2017;18:512. https://doi.org/10.1186/s12864-017-3903-3 .
doi: 10.1186/s12864-017-3903-3
ter Horst AM, Nigg JC, Dekker FM, Falk BW. Endogenous viral elements are widespread in arthropod genomes and commonly give rise to PIWI-interacting RNAs. J Virol. 2018;93:2124–42.
Whitfield ZJ, Dolan PT, Kunitomi M, Tassetto M, Seetin MG, Oh S, et al. The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome. Curr Biol. 2017;27:3511.e7-3519.e7.
Crochu S, Cook S, Attoui H, Charrel RN, De CR, Belhouchet M, et al. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol. 2004;85:1971–80. https://doi.org/10.1099/vir.0.79850-0 .
doi: 10.1099/vir.0.79850-0
pubmed: 15218182
Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6:e1001191.
pubmed: 21124940
pmcid: 2987831
Ruzzante L, Reijnders MJMF, Waterhouse RM. Of genes and genomes: mosquito evolution and diversity. Trends Parasitol. 2019;35:32–51.
pubmed: 30391118
Suzuki Y, Frangeul L, Dickson LB, Blanc H, Verdier Y, Vinh J, et al. Uncovering the repertoire of endogenous flaviviral elements in Aedes mosquito genomes. J Virol. 2017. https://doi.org/10.1128/JVI.00571-17 .
doi: 10.1128/JVI.00571-17
pubmed: 29046463
pmcid: 5730779
Chen X-G, Jiang X, Gu J, Xu M, Wu Y, Deng Y, et al. Genome sequence of the Asian tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc Natl Acad Sci. 2015;112(44):E5907–15.
pubmed: 26483478
pmcid: 4640774
Lequime S, Lambrechts L. Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses. Virus Evol. 2017;3:vew035.
pubmed: 28078104
pmcid: 5217911
Liu J, Swevers L, Kolliopoulou A, Smagghe G. Arboviruses and the challenge to establish systemic and persistent infections in competent mosquito vectors: the interaction with the RNAi mechanism. Front Physiol. 2019;10:890.
pubmed: 31354527
pmcid: 6638189
Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL. Domain enhanced lookup time accelerated BLAST. Biol Direct. 2012;7(1):1–14.
Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature. 2018;563:501–7.
pubmed: 30429615
pmcid: 6421076
Leyssen P, Charlier N, Lemey P, Billoir F, Vandamme AM, De Clercq E, et al. Complete genome sequence, taxonomic assignment, and comparative analysis of the untranslated regions of the Modoc virus, a flavivirus with no known vector. Virology. 2002;293:125–40.
pubmed: 11853406
Fan H, Zhao Q, Guo X, Sun Q, Zuo S, Wu C, et al. Complete genome sequence of Xishuangbanna flavivirus, a novel mosquito-specific flavivirus from China. Arch Virol. 2016;161(6):1723–7.
pubmed: 27001304
Zhang X, Guo X, Fan H, Zhao Q, Zuo S, Sun Q, et al. Complete genome sequence of Menghai flavivirus, a novel insect-specific flavivirus from China. Arch Virol. 2017;162(5):1435–9.
pubmed: 28175982
Gil P, Dupuy V, Koual R, Gueye Fall A, Biteye B, Gimonneau G, et al. A library preparation optimized for RNA virus metagenomics allows sensitive detection of an arbovirus in wild-caught vectors. P14. B Abstr Pathobiome 2018. INRA; 2018.
Miesen P, Joosten J, van Rij RP. PIWIs go viral: arbovirus-derived piRNAs in vector mosquitoes. PLOS Pathog. 2016;12:e1006017. https://doi.org/10.1371/journal.ppat.1006017 .
doi: 10.1371/journal.ppat.1006017
pubmed: 28033427
pmcid: 5198996
Saldaña MA, Etebari K, Hart CE, Widen SG, Wood TG, Thangamani S, et al. Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2017;11(7):e0005760.
pubmed: 28715413
pmcid: 5531668
Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;36:D13–21.
Klitting R, Gould EA, de Lamballerie X. G+C content differs in conserved and variable amino acid residues of flaviviruses and other evolutionary groups. Infect Genet Evol. 2016;45:332–40.
pubmed: 27663721
Crava CM, Varghese FS, Pischedda E, Halbach R, Palatini U, Marconcini M, et al. Population genomics in the arboviral vector Aedes aegypti reveals the genomic architecture and evolution of endogenous viral elements. Mol Ecol. 2021. https://doi.org/10.1111/mec.15798 .
doi: 10.1111/mec.15798
pubmed: 33432714
pmcid: 8048955
Van Der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.
Soghigian J, Gloria-Soria A, Robert V, Le Goff G, Failloux A, Powell JR. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol Ecol. 2020;29:3593–606. https://doi.org/10.1111/mec.15590 .
doi: 10.1111/mec.15590
pubmed: 33463828
pmcid: 7589284
Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, et al. Global genetic diversity of Aedes aegypti. Mol Ecol. 2016;25:5377–95.
pubmed: 27671732
pmcid: 5123671
Redmond SN, Sharma A, Sharakhov I, Tu Z, Sharakhova M, Neafsey DE. Linked-read sequencing identifies abundant microinversions and introgression in the arboviral vector Aedes aegypti. BMC Biol. 2020;18:26. https://doi.org/10.1186/s12915-020-0757-y .
doi: 10.1186/s12915-020-0757-y
pubmed: 32164699
pmcid: 7068900
Kotsakiozi P, Evans BR, Gloria-Soria A, Kamgang B, Mayanja M, Lutwama J, et al. Population structure of a vector of human diseases: Aedes aegypti in its ancestral range, Africa. Ecol Evol. 2018;8:7835–48. https://doi.org/10.1002/ece3.4278 .
doi: 10.1002/ece3.4278
pubmed: 30250667
pmcid: 6145026
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2014;59:95–117. https://doi.org/10.1146/annurev-ento-011613-162007 .
doi: 10.1146/annurev-ento-011613-162007
pubmed: 24160435
Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Cancer Res. 2017;77(21):e31–4.
pubmed: 29092934
pmcid: 5678989
Palatini U, Masri RA, Cosme LV, Koren S, Thibaud-Nissen F, Biedler JK, et al. Improved reference genome of the arboviral vector Aedes albopictus. Genome Biol. 2020;21:215. https://doi.org/10.1186/s13059-020-02141-w .
doi: 10.1186/s13059-020-02141-w
pubmed: 32847630
pmcid: 7448346
Miller JR, Koren S, Dilley KA, Puri V, Brown DM, Harkins DM, et al. Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. Gigascience. 2018;7:1–13.
pubmed: 29329394
Bolling BG, Vasilakis N, Guzman H, Widen SG, Wood TG, Popov VL, et al. Insect-specific viruses detected in laboratory mosquito colonies and their potential implications for experiments evaluating arbovirus vector competence. Am J Trop Med Hyg. 2015;92:422–8.
pubmed: 25510714
pmcid: 4347351
Blitvich BJ, Firth AE. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses. 2015;7(4):1927–59.
pubmed: 25866904
pmcid: 4411683
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
pubmed: 25371430
Kuno G. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains. J Med Entomol. 2010;47(6):957–71. https://doi.org/10.1603/ME10152 .
doi: 10.1603/ME10152
pubmed: 21175042
Pischedda E, Scolari F, Valerio F, Carballar-Lejarazú R, Catapano PL, Waterhouse RM, et al. Insights into an unexplored component of the mosquito repeatome: distribution and variability of viral sequences integrated into the genome of the arboviral vector Aedes albopictus. Front Genet. 2019;10:93.
pubmed: 30809249
pmcid: 6379468
Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Emrich S, Collins F, et al. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 2015;43(D1):D707–13.
pubmed: 25510499
Shah N, Nute MG, Warnow T, Pop M. Misunderstood parameter of NCBI BLAST impacts the correctness of bioinformatics workflows. Bioinformatics. 2019;35:1613–4.
pubmed: 30247621
Rose NH, Sylla M, Badolo A, Lutomiah J, Ayala D, Aribodor OB, et al. Climate and urbanization drive mosquito preference for humans. Curr Biol. 2020;30(18):3570–9.
pubmed: 32707056
pmcid: 7511451
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
pubmed: 22388286
pmcid: 22388286
Ziemann M, Kaspi A, El-Osta A. Evaluation of microRNA alignment techniques. RNA. 2016;22:1120–38.
pubmed: 27284164
pmcid: 4931105
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
pubmed: 29750242
pmcid: 6137996
Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res. 2005;15:330–40.
pubmed: 15687296
pmcid: 546535
Tajima S, Takasaki T, Matsuno S, Nakayama M, Kurane I. Genetic characterization of Yokose virus, a flavivirus isolated from the bat in Japan. Virology. 2005;332:38–44.
pubmed: 15661139
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
pubmed: 3198575
pmcid: 3198575
Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
pubmed: 12136088
pmcid: 12136088
Krijthe J. T-distributed stochastic neighbor embedding using a Barnes-Hut implementation [R package Rtsne version 0.15]. Comprehensive R Archive Network (CRAN). 2018. https://cran.r-project.org/package=Rtsne .
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23. https://doi.org/10.1111/j.2041-210X.2011.00169.x .
doi: 10.1111/j.2041-210X.2011.00169.x
Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics. 2016;32:1749–51.
pubmed: 26826718
pmcid: 4892413
Quinlan AR. BEDTools: the Swiss-Army tool for genome feature analysis. Curr Protoc Bioinform. 2014;47:11.12.1–34.