Cholinergic basal forebrain and hippocampal structure influence visuospatial memory in Parkinson's disease.


Journal

Brain imaging and behavior
ISSN: 1931-7565
Titre abrégé: Brain Imaging Behav
Pays: United States
ID NLM: 101300405

Informations de publication

Date de publication:
Feb 2022
Historique:
accepted: 02 06 2021
pubmed: 28 6 2021
medline: 11 2 2022
entrez: 27 6 2021
Statut: ppublish

Résumé

Visuospatial impairment in Parkinson's disease (PD) heralds the onset of a progressive dementia syndrome and might be associated with cholinergic dysfunction. It remains unclear however, whether degeneration of the cholinergic basal forebrain is directly related to cognitive decline, or whether relationships between this region and cognitive function are mediated by closely related brain structures such as those in the medial temporal lobe. To evaluate relationships between structure of the cholinergic basal forebrain, medial temporal lobe and cognition, 27 PD patients without dementia and 20 controls underwent neuropsychological assessment and MRI. Volumes of the cholinergic basal forebrain nuclei, the entorhinal cortex, the hippocampus and its subfields were measured. Regression models utilised basal forebrain and hippocampal volumetric measures to predict cognitive performance. In PD, visuospatial memory (but not verbal memory or executive function) was correlated with hippocampal volume, particularly CA2-3, and basal forebrain subregion Ch1-2, but not Ch4. In addition, hippocampal volume was correlated with Ch1-2 in PD. The relationship between Ch1-2 and visuospatial memory was mediated by CA2-3 integrity. There were no correlations between cognitive and volumetric measures in controls. Our data imply that the integrity of the cholinergic basal forebrain is associated with subregional hippocampal volume. Additionally, a relationship between visuospatial function and cholinergic nuclei does exist, but is fully mediated by variations in hippocampal structure. These findings are consistent with the recent hypothesis that forebrain cholinergic system degeneration results in cognitive deficits via cholinergic denervation, and subsequent structural degeneration, of its target regions.

Identifiants

pubmed: 34176042
doi: 10.1007/s11682-021-00481-0
pii: 10.1007/s11682-021-00481-0
doi:

Substances chimiques

Cholinergic Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

118-129

Subventions

Organisme : Javna Agencija za Raziskovalno Dejavnost RS
ID : L3-4255

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Aggleton, J. P., & Brown, M. W. (2006). Interleaving brain systems for episodic and recognition memory. Trends in Cognitive Sciences, 10(10), 455–463. https://doi.org/10.1016/j.tics.2006.08.003
doi: 10.1016/j.tics.2006.08.003 pubmed: 16935547
Agosta, F., Canu, E., Stefanova, E., Sarro, L., Tomić, A., Špica, V., et al. (2014). Mild cognitive impairment in Parkinson’s disease is associated with a distributed pattern of brain white matter damage. Human Brain Mapping, 35(5), 1921–1929. https://doi.org/10.1002/hbm.22302
doi: 10.1002/hbm.22302 pubmed: 23843285
Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. https://doi.org/10.1016/j.jalz.2011.03.008
doi: 10.1016/j.jalz.2011.03.008
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007
doi: 10.1016/j.neuroimage.2007.07.007 pubmed: 17761438
Ashburner, J. (2009). Computational anatomy with the SPM software. Magnetic Resonance Imaging, 27(8), 1163–1174. https://doi.org/10.1016/j.mri.2009.01.006
doi: 10.1016/j.mri.2009.01.006 pubmed: 19249168
Berlot, R., Metzler-Baddeley, C., Ikram, M. A., Jones, D. K., & O’Sullivan, M. J. (2016). Global efficiency of structural networks mediates cognitive control in mild cognitive impairment. Frontiers in Aging Neuroscience, 8(DEC). https://doi.org/10.3389/fnagi.2016.00292
Bohnen, N. I., & Albin, R. L. (2011). The cholinergic system and Parkinson disease. Behavioural Brain Research, 221(2), 564–573. https://doi.org/10.1016/j.bbr.2009.12.048
doi: 10.1016/j.bbr.2009.12.048 pubmed: 20060022
Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24(2), 197–211.
doi: 10.1016/S0197-4580(02)00065-9
Candy, J. M., Perry, R. H., Perry, E. K., Irving, D., Blessed, G., Fairbairn, A. F., & Tomlinson, B. E. (1983). Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. Journal of the Neurological Sciences, 59(2), 277–289.
doi: 10.1016/0022-510X(83)90045-X
Carlesimo, G. A., Piras, F., Assogna, F., Pontieri, F. E., Caltagirone, C., & Spalletta, G. (2012). Hippocampal abnormalities and memory deficits in Parkinson disease: A multimodal imaging study. Neurology, 78(24), 1939–1945. https://doi.org/10.1212/WNL.0b013e318259e1c5
doi: 10.1212/WNL.0b013e318259e1c5 pubmed: 22649213
Cedres, N., Ferreira, D., Machado, A., Shams, S., Sacuiu, S., Waern, M., et al. (2020). Predicting Fazekas scores from automatic segmentations of white matter signal abnormalities. Aging, 12(1), 894–901. https://doi.org/10.18632/aging.102662
doi: 10.18632/aging.102662 pubmed: 31927535 pmcid: 6977667
Chen, B., Fan, G. G., Liu, H., & Wang, S. (2015). Changes in anatomical and functional connectivity of Parkinson’s disease patients according to cognitive status. European Journal of Radiology, 84(7), 1318–1324. https://doi.org/10.1016/j.ejrad.2015.04.014
doi: 10.1016/j.ejrad.2015.04.014 pubmed: 25963506
Churchyard, A., & Lees, A. J. (1997). The relationship between dementia and direct involvement of the hippocampus and amygdala in Parkinson’s disease. Neurology, 49(6), 1570–1576.
doi: 10.1212/WNL.49.6.1570
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and Surface Reconstruction. Neuroimage, 9(2), 179–194. https://doi.org/10.1006/nimg.1998.0395
doi: 10.1006/nimg.1998.0395 pubmed: 9931268
De Lacalle, S., Lim, C., Sobreviela, T., Mufson, E. J., Hersh, L. B., & Saper, C. B. (1994). Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. The Journal of Comparative Neurology, 345(3), 321–344. https://doi.org/10.1002/cne.903450302
doi: 10.1002/cne.903450302 pubmed: 7929905
Dickson, D. W., Schmidt, M. L., Lee, V. M., Zhao, M. L., Yen, S. H., & Trojanowski, J. Q. (1994). Immunoreactivity profile of hippocampal CA2/3 neurites in diffuse Lewy body disease. Acta Neuropathologica, 87(3), 269–276.
doi: 10.1007/BF00296742
Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207. https://doi.org/10.1006/nimg.1998.0396
doi: 10.1006/nimg.1998.0396 pubmed: 9931269
Foo, H., Mak, E., Chander, R. J., Ng, A., Au, W. L., Sitoh, Y. Y., et al. (2017). Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson’s disease. NeuroImage. Clinical, 14, 37–42. https://doi.org/10.1016/j.nicl.2016.12.008
doi: 10.1016/j.nicl.2016.12.008 pubmed: 28116240
Forsaa, E. B., Larsen, J. P., Wentzel-Larsen, T., & Alves, G. (2010). What predicts mortality in Parkinson disease?: A prospective population-based long-term study. Neurology, 75(14), 1270–1276. https://doi.org/10.1212/WNL.0b013e3181f61311
doi: 10.1212/WNL.0b013e3181f61311 pubmed: 20921512
Freund, H.-J., Kuhn, J., Lenartz, D., Mai, J. K., Schnell, T., Klosterkoetter, J., & Sturm, V. (2009). Cognitive functions in a patient with Parkinson-dementia syndrome undergoing deep brain stimulation. Archives of Neurology, 66(6), 781–785. https://doi.org/10.1001/archneurol.2009.102
doi: 10.1001/archneurol.2009.102 pubmed: 19506141
Gargouri, F., Gallea, C., Mongin, M., Pyatigorskaya, N., Valabregue, R., Ewenczyk, C., et al. (2019). Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson’s disease. Movement Disorders, 34(4), 516–525. https://doi.org/10.1002/mds.27561
doi: 10.1002/mds.27561 pubmed: 30536444
Geula, C., & Mesulam, M. (1989). Cortical cholinergic fibers in aging and Alzheimer’s disease: A morphometric study. Neuroscience, 33(3), 469–481.
doi: 10.1016/0306-4522(89)90399-0
Gratwicke, J., Zrinzo, L., Kahan, J., Peters, A., Beigi, M., Akram, H., et al. (2018). Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia. JAMA Neurology, 75(2), 169–178. https://doi.org/10.1001/jamaneurol.2017.3762
doi: 10.1001/jamaneurol.2017.3762 pubmed: 29255885
Grothe, M. J., Heinsen, H., Amaro, E., Grinberg, L. T., & Teipel, S. J. (2016). Cognitive correlates of basal forebrain atrophy and associated cortical hypometabolism in mild cognitive impairment. Cerebral Cortex, 26(6), 2411–2426. https://doi.org/10.1093/cercor/bhv062
doi: 10.1093/cercor/bhv062 pubmed: 25840425
Higginson, C. I., King, D. S., Levine, D., Wheelock, V. L., Khamphay, N. O., & Sigvardt, K. A. (2003). The relationship between executive function and verbal memory in Parkinson’s disease. Brain and Cognition, 52(3), 343–352.
doi: 10.1016/S0278-2626(03)00180-5
Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery, and Psychiatry, 55(3), 181–184.
doi: 10.1136/jnnp.55.3.181
Husain, M., & Nachev, P. (2007). Space and the parietal cortex. Trends in Cognitive Sciences, 11(1), 30–36. https://doi.org/10.1016/j.tics.2006.10.011
doi: 10.1016/j.tics.2006.10.011 pubmed: 17134935 pmcid: 2323620
Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., et al. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage, 115, 117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042
doi: 10.1016/j.neuroimage.2015.04.042 pubmed: 25936807
Iglesias, J. E. (2019 December 5). Segmentation of hippocampal subfields and nuclei of the amygdala (cross-sectional and longitudinal). FreeSurferWiki. FreeSurfer. https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfieldsAndNucleiOfAmygdala . Accessed 10 April 2020
Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15(4), 309–334. https://doi.org/10.1037/a0020761
doi: 10.1037/a0020761 pubmed: 20954780
Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2013). Cognitive impairment in Parkinson’s disease: The dual syndrome hypothesis. Neuro-Degenerative Diseases, 11(2), 79–92. https://doi.org/10.1159/000341998
doi: 10.1159/000341998 pubmed: 23038420
Kesner, R. P. (2013). A process analysis of the CA3 subregion of the hippocampus. Frontiers in Cellular Neuroscience, 7, 78. https://doi.org/10.3389/fncel.2013.00078
doi: 10.3389/fncel.2013.00078 pubmed: 23750126 pmcid: 3664330
Kondo, H., & Zaborszky, L. (2016). Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. The Journal of Comparative Neurology, 524(12), 2503–2515. https://doi.org/10.1002/cne.23967
doi: 10.1002/cne.23967 pubmed: 26780730 pmcid: 4900916
Lawrence, A. J., Chung, A. W., Morris, R. G., Markus, H. S., & Barrick, T. R. (2014). Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology, 83(4), 304–311. https://doi.org/10.1212/WNL.0000000000000612
doi: 10.1212/WNL.0000000000000612 pubmed: 24951477 pmcid: 4115608
Lawson, R. A., Yarnall, A. J., Duncan, G. W., Breen, D. P., Khoo, T. K., Williams-Gray, C. H., et al. (2016). Cognitive decline and quality of life in incident Parkinson’s disease: The role of attention. Parkinsonism & Related Disorders, 27, 47–53. https://doi.org/10.1016/j.parkreldis.2016.04.009
doi: 10.1016/j.parkreldis.2016.04.009
Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., et al. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27(3), 349–356. https://doi.org/10.1002/mds.24893
doi: 10.1002/mds.24893 pubmed: 22275317 pmcid: 3641655
Mattila, P. M., Rinne, J. O., Helenius, H., & Röyttä, M. (1999). Neuritic degeneration in the hippocampus and amygdala in Parkinson’s disease in relation to Alzheimer pathology. Acta Neuropathologica, 98(2), 157–164.
doi: 10.1007/s004010051064
McGaughy, J., Koene, R. A., Eichenbaum, H., & Hasselmo, M. E. (2005). Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed nonmatch-to-sample task. Journal of Neuroscience, 25(44), 10273–10281. https://doi.org/10.1523/JNEUROSCI.2386-05.2005
doi: 10.1523/JNEUROSCI.2386-05.2005 pubmed: 16267235
Mesulam, M. (2004). The cholinergic lesion of Alzheimer’s disease: Pivotal factor or side show? Learning & Memory, 11(1), 43–49. https://doi.org/10.1101/lm.69204
doi: 10.1101/lm.69204
Mesulam, M.-M. (2013). Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. The Journal of Comparative Neurology, 521(18), 4124–4144. https://doi.org/10.1002/cne.23415
doi: 10.1002/cne.23415 pubmed: 23852922 pmcid: 4175400
Mesulam, M.-M., Mufson, E. J., Levey, A. I., & Wainer, B. H. (1983a). Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. The Journal of Comparative Neurology, 214(2), 170–197. https://doi.org/10.1002/cne.902140206
doi: 10.1002/cne.902140206 pubmed: 6841683
Mesulam, M. M., Mufson, E. J., Wainer, B. H., & Levey, A. I. (1983b). Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 10(4), 1185–1201.
doi: 10.1016/0306-4522(83)90108-2
Molinuevo, J. L., Rabin, L. A., Amariglio, R., Buckley, R., Dubois, B., Ellis, K. A., et al. (2017). Implementation of subjective cognitive decline criteria in research studies. Alzheimer’s and Dementia, 13(3), 296–311.  https://doi.org/10.1016/j.jalz.2016.09.012
doi: 10.1016/j.jalz.2016.09.012 pubmed: 28603768 pmcid: 5454085
Muir, J. L. (1997). Acetylcholine, aging, and Alzheimer’s disease. Pharmacology Biochemistry, and Behavior, 56(4), 687–696.
doi: 10.1016/S0091-3057(96)00431-5
Nakashiba, T., Young, J. Z., McHugh, T. J., Buhl, D. L., & Tonegawa, S. (2008). Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science (New York, N.Y.), 319(5867), 1260–1264. https://doi.org/10.1126/science.1151120
doi: 10.1126/science.1151120
Nakazawa, K., Sun, L. D., Quirk, M. C., Rondi-Reig, L., Wilson, M. A., & Tonegawa, S. (2003). Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron, 38(2), 305–315. https://doi.org/10.1016/s0896-6273(03)00165-x
doi: 10.1016/S0896-6273(03)00165-X
Pereira, J. B., Junqué, C., Bartrés-Faz, D., Ramírez-Ruiz, B., Marti, M.-J., & Tolosa, E. (2013). Regional vulnerability of hippocampal subfields and memory deficits in Parkinson’s disease. Hippocampus, 23(8), 720–728. https://doi.org/10.1002/hipo.22131
doi: 10.1002/hipo.22131 pubmed: 23553678
Ray, N. J., Bradburn, S., Murgatroyd, C., Toseeb, U., Mir, P., Kountouriotis, G. K., et al. (2018). In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain, 141(1), 165–176. https://doi.org/10.1093/brain/awx310
doi: 10.1093/brain/awx310 pubmed: 29228203
Sassin, I., Schultz, C., Thal, D. R., Rüb, U., Arai, K., Braak, E., & Braak, H. (2000). Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathologica, 100(3), 259–269.
doi: 10.1007/s004019900178
Schmitz, T. W., Nathan Spreng, R., Alzheimer’s Disease Neuroimaging Initiative, M. W., Aisen, P., Petersen, R., Jack, C. R., , et al. (2016). Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology. Nature Communications, 7, 13249. https://doi.org/10.1038/ncomms13249
doi: 10.1038/ncomms13249 pubmed: 27811848 pmcid: 5097157
Schulz, J., Pagano, G., Fernández Bonfante, J. A., Wilson, H., & Politis, M. (2018). Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease. Brain, 141(5), 1501–1516. https://doi.org/10.1093/brain/awy072
doi: 10.1093/brain/awy072 pubmed: 29701787 pmcid: 6171218
Shimada, H., Hirano, S., Shinotoh, H., Aotsuka, A., Sato, K., Tanaka, N., et al. (2009). Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology, 73(4), 273–278. https://doi.org/10.1212/WNL.0b013e3181ab2b58
doi: 10.1212/WNL.0b013e3181ab2b58 pubmed: 19474411
Teipel, S. J., Flatz, W. H., Heinsen, H., Bokde, A. L. W., Schoenberg, S. O., Stöckel, S., et al. (2005). Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain : A Journal of Neurology, 128(Pt 11), 2626–2644. https://doi.org/10.1093/brain/awh589
doi: 10.1093/brain/awh589
Trenerry, M., Crosson, B., DeBoe, J., & Leber, W. (1989). Stroop Neuropsychological Screening Test Manual. Psychological Assessment Resources (PAR).
Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R., et al. (2013, August). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. The Lancet Neurology, 12(8), 822–838. https://doi.org/10.1016/S1474-4422(13)70124-8
Weintraub, D., Doshi, J., Koka, D., Davatzikos, C., Siderowf, A. D., Duda, J. E., et al. (2011). Neurodegeneration across stages of cognitive decline in Parkinson disease. Archives of Neurology, 68(12), 1562–1568. https://doi.org/10.1001/archneurol.2011.725
doi: 10.1001/archneurol.2011.725 pubmed: 22159053 pmcid: 3290902
Yao, N., Cheung, C., Pang, S., Shek-kwan Chang, R., Lau, K. K., Suckling, J., et al. (2016). Multimodal MRI of the hippocampus in Parkinson’s disease with visual hallucinations. Brain Structure and Function, 221(1), 287–300. https://doi.org/10.1007/s00429-014-0907-5
doi: 10.1007/s00429-014-0907-5 pubmed: 25287513

Auteurs

Rok Berlot (R)

Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia. rok.berlot@kclj.si.
Department of Neurology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia. rok.berlot@kclj.si.

Zvezdan Pirtošek (Z)

Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
Department of Neurology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.

Simon Brezovar (S)

Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia.
Department of Neurology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.

Blaž Koritnik (B)

Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.
Institute of Radiology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.

Stefan J Teipel (SJ)

German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Gelsheimer Str. 20, 18147, Rostock, Germany.
Department of Psychosomatic Medicine, University of Rostock, Schillingallee 35, 18057, Rostock, Germany.

Michel J Grothe (MJ)

German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Gelsheimer Str. 20, 18147, Rostock, Germany.
Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, 41013, Seville, Spain.

Nicola J Ray (NJ)

Department of Psychology, Manchester Metropolitan University, 53 Bonsall St, Manchester, M15 6GX, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH