Effect of Methylene Blue Pathogen Inactivation on the Integrity of Immunoglobulin M and G.

Immunoglobulin G Immunoglobulin M Methylene blue Pathogen inactivation

Journal

Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie
ISSN: 1660-3796
Titre abrégé: Transfus Med Hemother
Pays: Switzerland
ID NLM: 101176417

Informations de publication

Date de publication:
May 2021
Historique:
received: 01 10 2020
accepted: 21 12 2020
entrez: 28 6 2021
pubmed: 29 6 2021
medline: 29 6 2021
Statut: ppublish

Résumé

In the light of the ongoing SARS-CoV-2 pandemic, convalescent plasma is a treatment option for CO-VID-19. In contrast to usual therapeutic plasma, the therapeutic agents of convalescent plasma do not represent clotting factor activities, but immunoglobulins. Quarantine storage of convalescent plasma as a measure to reduce the risk of pathogen transmission is not feasible. Therefore, pathogen inactivation (e.g., Theraflex®-MB, Macopharma, Mouvaux, France) is an attractive option. Data on the impact of pathogen inactivation by methylene blue (MB) treatment on antibody integrity are sparse. Antigen-specific binding capacity was tested before and after MB treatment of plasma ( There was no significant difference in the isoagglutinin titers, the antigen binding capacity of anti-EBV and anti-tetanus toxin IgG, as well as the Fc receptor binding capacity before and after MB treatment of plasma. MB treatment of plasma does not inhibit the binding capacity of IgM and IgG to their epitopes, or the Fc receptor interaction of IgG. Based on these results, MB treatment of convalescent plasma is appropriate to reduce the risk of pathogen transmission if quarantine storage is omitted.

Identifiants

pubmed: 34177418
doi: 10.1159/000514485
pii: tmh-0048-0148
pmc: PMC8215996
doi:

Types de publication

Journal Article

Langues

eng

Pagination

148-153

Informations de copyright

Copyright © 2021 by S. Karger AG, Basel.

Déclaration de conflit d'intérêts

The authors have no conflicts of interest to declare.

Références

J Clin Invest. 2020 Jun 1;130(6):2757-2765
pubmed: 32254064
Clin Infect Dis. 2011 Feb 15;52(4):447-56
pubmed: 21248066
Lancet Microbe. 2020 Jun;1(2):e63
pubmed: 32835332
JAMA. 2020 Apr 28;323(16):1582-1589
pubmed: 32219428
Vox Sang. 2006 Oct;91(3):256-63
pubmed: 16958839
Lancet Infect Dis. 2020 Apr;20(4):398-400
pubmed: 32113510
Vox Sang. 2010 Jan;98(1):47-55
pubmed: 19719461
Transfusion. 2012 Mar;52(3):529-36
pubmed: 21880044
Transfusion. 2010 Apr;50(4):926-31
pubmed: 20051060
J Infect Dis. 2015 Jan 1;211(1):80-90
pubmed: 25030060
Photochem Photobiol. 2002 Jun;75(6):561-4
pubmed: 12081315
Transfus Apher Sci. 2008 Jun;38(3):271-80
pubmed: 18487089
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9490-9496
pubmed: 32253318
Vox Sang. 2011 Feb;100(2):169-78
pubmed: 20667071
Vox Sang. 2000;78(3):185-93
pubmed: 10838520

Auteurs

Johannes Raster (J)

Abteilung Transfusionsmedizin, Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.

Kathrin Zimmermann (K)

Institut für Medizinische Mikrobiologie, Universitätsmedizin Greifswald, Greifswald, Germany.

Jan Wesche (J)

Abteilung Transfusionsmedizin, Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.

Konstanze Aurich (K)

Abteilung Transfusionsmedizin, Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.

Andreas Greinacher (A)

Abteilung Transfusionsmedizin, Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.

Kathleen Selleng (K)

Abteilung Transfusionsmedizin, Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.

Classifications MeSH