Fast and strong amplifiers of natural selection.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
29 06 2021
Historique:
received: 01 02 2021
accepted: 10 06 2021
entrez: 30 6 2021
pubmed: 1 7 2021
medline: 23 7 2021
Statut: epublish

Résumé

Selection and random drift determine the probability that novel mutations fixate in a population. Population structure is known to affect the dynamics of the evolutionary process. Amplifiers of selection are population structures that increase the fixation probability of beneficial mutants compared to well-mixed populations. Over the past 15 years, extensive research has produced remarkable structures called strong amplifiers which guarantee that every beneficial mutation fixates with high probability. But strong amplification has come at the cost of considerably delaying the fixation event, which can slow down the overall rate of evolution. However, the precise relationship between fixation probability and time has remained elusive. Here we characterize the slowdown effect of strong amplification. First, we prove that all strong amplifiers must delay the fixation event at least to some extent. Second, we construct strong amplifiers that delay the fixation event only marginally as compared to the well-mixed populations. Our results thus establish a tight relationship between fixation probability and time: Strong amplification always comes at a cost of a slowdown, but more than a marginal slowdown is not needed.

Identifiants

pubmed: 34188036
doi: 10.1038/s41467-021-24271-w
pii: 10.1038/s41467-021-24271-w
pmc: PMC8242091
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

4009

Références

Kimura, M. On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962).
pubmed: 14456043 pmcid: 1210364 doi: 10.1093/genetics/47.6.713
Ewens, W. Mathematical Population Genetics 1: Theoretical Introduction. Interdisciplinary Applied Mathematics (Springer, 2004).
McCandlish, D. M., Epstein, C. L. & Plotkin, J. B. Formal properties of the probability of fixation: Identities, inequalities and approximations. Theor. Popul. Biol. 99, 98–113 (2015).
pubmed: 25450112 doi: 10.1016/j.tpb.2014.11.004
Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).
pubmed: 5637732 doi: 10.1038/217624a0
Desai, M. M., Fisher, D. S. & Murray, A. W. The speed of evolution and maintenance of variation in asexual populations. Curr. Biol. 17, 385–394 (2007).
pubmed: 17331728 pmcid: 2987722 doi: 10.1016/j.cub.2007.01.072
Nowak, M. A., Sasaki, A., Taylor, C. & Fudenberg, D. Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646–650 (2004).
pubmed: 15071593 doi: 10.1038/nature02414
Moran, P. A. P. The Statistical Processes of Evolutionary Theory (Oxford University Press, 1962).
Maruyama, T. A markov process of gene frequency change in a geographically structured population. Genetics 76, 367–377 (1974).
pubmed: 4822471 pmcid: 1213071 doi: 10.1093/genetics/76.2.367
Adlam, B. & Nowak, M. A. Universality of fixation probabilities in randomly structured populations. Sci. Rep. 4, 1–6 (2014).
doi: 10.1038/srep06692
Szabó, G. & Fath, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).
doi: 10.1016/j.physrep.2007.04.004
Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Modern Phys. 81, 591 (2009).
doi: 10.1103/RevModPhys.81.591
Yang, G., Benko, T. P., Cavaliere, M., Huang, J. & Perc, M. Identification of influential invaders in evolutionary populations. Sci. Rep. 9, 1–12 (2019).
Yang, G., Cavaliere, M., Zhu, C. & Perc, M. Strategically positioning cooperators can facilitate the contagion of cooperation. Sci. Rep. 11, 1–12 (2021).
Broom, M. & Rychtář, J. An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 2609–2627 (2008).
Broom, M., Rychtář, J. & Stadler, B. T. Evolutionary dynamics on graphs - the effect of graph structure and initial placement on mutant spread. J Stat. Theory Pract. 5, 369–381 (2011).
doi: 10.1080/15598608.2011.10412035
Houchmandzadeh, B. & Vallade, M. The fixation probability of a beneficial mutation in a geographically structured population. New J. Phys. 13, 073020 (2011).
doi: 10.1088/1367-2630/13/7/073020
Ibsen-Jensen, R., Chatterjee, K. & Nowak, M. A. Computational complexity of ecological and evolutionary spatial dynamics. Proc. Natl Acad. Sci. 112, 15636–15641 (2015).
pubmed: 26644569 pmcid: 4697423 doi: 10.1073/pnas.1511366112
Allen, B. et al. Transient amplifiers of selection and reducers of fixation for death-birth updating on graphs. PLOS Comput. Biol. 16, 1–20 (2020).
doi: 10.1371/journal.pcbi.1007529
Tkadlec, J., Pavlogiannis, A., Chatterjee, K. & Nowak, M. A. Limits on amplifiers of natural selection under death-birth updating. PLOS Comput. Biol. 16, 1–13 (2020).
doi: 10.1371/journal.pcbi.1007494
Adlam, B., Chatterjee, K. & Nowak, M. Amplifiers of Selection. In: Proceedings of the Royal Society A, Vol. 471, 20150114 (2015).
Monk, T., Green, P. & Paulin, M. Martingales and fixation probabilities of evolutionary graphs. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 20130730 (2014).
Chalub, F. A. C. C. An asymptotic expression for the fixation probability of a mutant in star graphs. J. Dyn. Games 3, 217–223 (2016).
doi: 10.3934/jdg.2016011
Pavlogiannis, A., Tkadlec, J., Chatterjee, K. & Nowak, M. A. Amplification on undirected population structures: Comets beat stars. Sci. Rep. 7, 82 (2017).
Lieberman, E., Hauert, C. & Nowak, M. A. Evolutionary dynamics on graphs. Nature 433, 312–316 (2005).
pubmed: 15662424 doi: 10.1038/nature03204
Galanis, A., Göbel, A., Goldberg, L. A., Lapinskas, J. & Richerby, D. Amplifiers for the moran process. J. ACM 64, 5 (2017).
doi: 10.1145/3019609
Jamieson-Lane, A. & Hauert, C. Fixation probabilities on superstars, revisited and revised. J. Theor. Biol. 382, 44–56 (2015).
pubmed: 26122591 doi: 10.1016/j.jtbi.2015.06.029
Giakkoupis, G. Amplifiers and suppressors of selection for the moran process on undirected graphs. arXiv preprint arXiv:1611.01585 (2016).
Pavlogiannis, A., Tkadlec, J., Chatterjee, K. & Nowak, M. A. Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory. Commun. Biol. 1, 71 (2018).
pubmed: 30271952 pmcid: 6123726 doi: 10.1038/s42003-018-0078-7
Goldberg, L. A. et al. Asymptotically optimal amplifiers for the moran process. Theor. Comput. Sci. 758, 73–93 (2019).
doi: 10.1016/j.tcs.2018.08.005
Kimura, M. & Ohta, T. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969).
pubmed: 17248440 pmcid: 1212239 doi: 10.1093/genetics/61.3.763
Slatkin, M. Fixation probabilities and fixation times in a subdivided population. Evolution 35, 477–488 (1981).
pubmed: 28563585 doi: 10.2307/2408196
Whitlock, M. Fixation probability and time in subdivided populations. Genetics 779, 767–779 (2003).
doi: 10.1093/genetics/164.2.767
Frean, M., Rainey, P. B. & Traulsen, A. The effect of population structure on the rate of evolution. Proc. R. Soc. B Biol. Sci. 280, 20130211 (2013).
doi: 10.1098/rspb.2013.0211
Hindersin, L. & Traulsen, A. Counterintuitive properties of the fixation time in network-structured populations. J. R. Soc. Interface 11, 20140606 (2014).
Hindersin, L., Möller, M., Traulsen, A. & Bauer, B. Exact numerical calculation of fixation probability and time on graphs. Biosystems 150, 87–91 (2016).
pubmed: 27555086 doi: 10.1016/j.biosystems.2016.08.010
Tkadlec, J., Pavlogiannis, A., Chatterjee, K. & Nowak, M. A. Population structure determines the tradeoff between fixation probability and fixation time. Commun. Biol. 2, 138 (2019).
pubmed: 31044163 pmcid: 6478818 doi: 10.1038/s42003-019-0373-y
Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102, 127 (1998).
pubmed: 9720276 doi: 10.1023/A:1017067816551
Imhof, M. & Schlötterer, C. Fitness effects of advantageous mutations in evolving escherichia coli populations. Proc. Natl Acad. Sci. 98, 1113–1117 (2001).
pubmed: 11158603 pmcid: 14717 doi: 10.1073/pnas.98.3.1113
Park, S.-C. & Krug, J. Clonal interference in large populations. Proc. Natl Acad. Sci. 104, 18135–18140 (2007).
pubmed: 17984061 pmcid: 2084309 doi: 10.1073/pnas.0705778104
Lang, G. I., Botstein, D. & Desai, M. M. Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188, 647–661 (2011).
pubmed: 21546542 pmcid: 3176544 doi: 10.1534/genetics.111.128942
Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).
pubmed: 23873039 pmcid: 3758440 doi: 10.1038/nature12344
Garcia, V., Glassberg, E. C., Harpak, A. & Feldman, M. W. Clonal interference can cause wavelet-like oscillations of multilocus linkage disequilibrium. J. R. Soc. Interface 15, 20170921 (2018).
pubmed: 29563246 pmcid: 5908532 doi: 10.1098/rsif.2017.0921
Nowak, M. A., Michor, F. & Iwasa, Y. The linear process of somatic evolution. Proc Natl Acad. Sci. 100, 14966–14969 (2003).
pubmed: 14657359 pmcid: 299861 doi: 10.1073/pnas.2535419100
Nowak, M. A. Evolutionary Dynamics: Exploring the Equations of Life (Belknap Press of Harvard University Press, 2006).
Díaz, J. et al. Approximating fixation probabilities in the generalized moran process. Algorithmica 69, 78–91 (2014).
doi: 10.1007/s00453-012-9722-7
Ann Goldberg, L., Lapinskas, J. & Richerby, D. Phase transitions of the moran process and algorithmic consequences. Random Struct. Algorithms 56, 597–647 (2020).
doi: 10.1002/rsa.20890
Askari, M. & Samani, K. A. Analytical calculation of average fixation time in evolutionary graphs. Phys. Rev. E 92, 042707 (2015).
doi: 10.1103/PhysRevE.92.042707
Möller, M., Hindersin, L. & Traulsen, A. Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time. Commun. Biol. 2, 137 (2019).
pubmed: 31044162 pmcid: 6478964 doi: 10.1038/s42003-019-0374-x
Keymer, J. E., Galajda, P., Muldoon, C., Park, S. & Austin, R. H. Bacterial metapopulations in nanofabricated landscapes. Proc. Natl Acad. Sci. 103, 17290–17295 (2006).
pubmed: 17090676 pmcid: 1635019 doi: 10.1073/pnas.0607971103
Männik, J., Driessen, R., Galajda, P., Keymer, J. E. & Dekker, C. Bacterial growth and motility in sub-micron constrictions. Proc. Natl Acad. Sci. 106, 14861–14866 (2009). 
Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).
pubmed: 22224772 doi: 10.1146/annurev-immunol-020711-075032
Flajolet, P., Gardy, D. & Thimonier, L. Birthday paradox, coupon collectors, caching algorithms and self-organizing search. Discret. Appl. Math. 39, 207–229 (1992).
doi: 10.1016/0166-218X(92)90177-C

Auteurs

Josef Tkadlec (J)

Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA. josef.tkadlec@gmail.com.

Andreas Pavlogiannis (A)

Department of Computer Science, Aarhus University, Aabogade 34, 8200, Aarhus, Denmark.

Krishnendu Chatterjee (K)

Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.

Martin A Nowak (MA)

Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Classifications MeSH