Neutrophil Extracellular Traps Induce the Epithelial-Mesenchymal Transition: Implications in Post-COVID-19 Fibrosis.
COVID-19
NETosis
SARS-CoV2
epithelial-mesenchymal transition
lung fibrosis
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2021
2021
Historique:
received:
02
02
2021
accepted:
31
05
2021
entrez:
1
7
2021
pubmed:
2
7
2021
medline:
13
7
2021
Statut:
epublish
Résumé
The release of neutrophil extracellular traps (NETs), a process termed NETosis, avoids pathogen spread but may cause tissue injury. NETs have been found in severe COVID-19 patients, but their role in disease development is still unknown. The aim of this study is to assess the capacity of NETs to drive epithelial-mesenchymal transition (EMT) of lung epithelial cells and to analyze the involvement of NETs in COVID-19. Bronchoalveolar lavage fluid of severe COVID-19 patients showed high concentration of NETs that correlates with neutrophils count; moreover, the analysis of lung tissues of COVID-19 deceased patients showed a subset of alveolar reactive pneumocytes with a co-expression of epithelial marker and a mesenchymal marker, confirming the induction of EMT mechanism after severe SARS-CoV2 infection. By airway
Identifiants
pubmed: 34194429
doi: 10.3389/fimmu.2021.663303
pmc: PMC8236949
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
663303Informations de copyright
Copyright © 2021 Pandolfi, Bozzini, Frangipane, Percivalle, De Luigi, Violatto, Lopez, Gabanti, Carsana, D’Amato, Morosini, De Amici, Nebuloni, Fossali, Colombo, Saracino, Codullo, Gnecchi, Bigini, Baldanti, Lilleri and Meloni.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Arterioscler Thromb Vasc Biol. 2018 Aug;38(8):1901-1912
pubmed: 29976772
Blood. 2020 Sep 3;136(10):1169-1179
pubmed: 32597954
Cells. 2020 Jun 02;9(6):
pubmed: 32498376
J Exp Med. 2020 Dec 7;217(12):
pubmed: 32926098
JCI Insight. 2016 Oct 20;1(17):e88912
pubmed: 27777975
Arterioscler Thromb Vasc Biol. 2016 Oct;36(10):2035-7
pubmed: 27655779
Thorax. 2000 Jan;55(1):53-9
pubmed: 10607802
PLoS One. 2009 Nov 17;4(11):e7870
pubmed: 19924243
JCI Insight. 2018 Feb 8;3(3):
pubmed: 29415887
Methods Mol Biol. 2019;1982:517-528
pubmed: 31172493
JCI Insight. 2020 Jun 4;5(11):
pubmed: 32329756
Toxicol Sci. 2018 Jul 1;164(1):21-30
pubmed: 29534242
Respir Res. 2016 Oct 17;17(1):129
pubmed: 27751187
BMC Pulm Med. 2020 Nov 16;20(1):301
pubmed: 33198751
Clin Sci (Lond). 2017 May 22;131(11):1147-1159
pubmed: 28381600
Front Immunol. 2020 Aug 18;11:2063
pubmed: 33013872
J Exp Med. 2020 Dec 7;217(12):
pubmed: 32926097
PLoS One. 2012;7(2):e32366
pubmed: 22389696
Arterioscler Thromb Vasc Biol. 2017 Jul;37(7):1371-1379
pubmed: 28495931
Respir Res. 2007 Apr 16;8:31
pubmed: 17433115
Am J Hematol. 2020 Jul;95(7):834-847
pubmed: 32282949
Lancet Infect Dis. 2020 Oct;20(10):1135-1140
pubmed: 32526193
Atherosclerosis. 2019 Sep;288:9-16
pubmed: 31280097
Toxicol In Vitro. 2019 Feb;54:189-193
pubmed: 30290203
Nature. 2020 May;581(7807):221-224
pubmed: 32225175
Front Pharmacol. 2020 Jun 05;11:870
pubmed: 32581816
JCI Insight. 2020 Jun 18;5(12):
pubmed: 32427582
Cancers (Basel). 2020 Jun 11;12(6):
pubmed: 32545405
Euro Surveill. 2020 Jun;25(24):
pubmed: 32583766
J Innate Immun. 2017;9(4):387-402
pubmed: 28467984
Cell Mol Immunol. 2019 Jan;16(1):19-27
pubmed: 29572545
J Immunol. 2012 Sep 15;189(6):2689-95
pubmed: 22956760
Am J Respir Crit Care Med. 2020 Sep 15;202(6):812-821
pubmed: 32584597
J Vis Exp. 2015 Apr 16;(98):
pubmed: 25938591
J Exp Med. 2020 Jun 1;217(6):
pubmed: 32302401
Nature. 2020 May;581(7807):215-220
pubmed: 32225176