The future of immune checkpoint combinations with tumor-targeted small molecule drugs.


Journal

Emerging topics in life sciences
ISSN: 2397-8554
Titre abrégé: Emerg Top Life Sci
Pays: England
ID NLM: 101706399

Informations de publication

Date de publication:
12 11 2021
Historique:
received: 03 05 2021
revised: 11 06 2021
accepted: 15 06 2021
pubmed: 2 7 2021
medline: 15 3 2022
entrez: 1 7 2021
Statut: ppublish

Résumé

Immune-checkpoint blockade (ICB) has transformed the landscape of cancer treatment. However, there is much to understand around refractory or acquired resistance in patients in order to utilize ICB therapy to its full potential. In this perspective article, we discuss the opportunities and challenges that are emerging as our understanding of immuno-oncology resistance matures. Firstly, there has been remarkable progress made to understand the exquisite overlap between oncogenic and immune signaling pathways. Several cancer-signaling pathways are constitutively active in oncogenic settings and also play physiological roles in immune cell function. A growing number of precision oncology tumor-targeted drugs show remarkable immunogenic properties that might be harnessed with rational combination strategies. Secondly, we now understand that the immune system confers a strong selective pressure on tumors. Whilst this pressure can lead to novel tumor evolution and immune escape, there is a growing recognition of tumor-intrinsic dependencies that arise in immune pressured environments. Such dependencies provide a roadmap for novel tumor-intrinsic drug targets to alleviate ICB resistance. We anticipate that rational combinations with existing oncology drugs and a next wave of tumor-intrinsic drugs that specifically target immunological resistance will represent the next frontier of therapeutic opportunity.

Identifiants

pubmed: 34196724
pii: 229141
doi: 10.1042/ETLS20210064
pmc: PMC8726049
doi:

Substances chimiques

Immune Checkpoint Inhibitors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

675-680

Informations de copyright

© 2021 The Author(s).

Références

J Transl Med. 2018 Aug 31;16(1):242
pubmed: 30170620
JAMA Oncol. 2016 Dec 1;2(12):1565-1573
pubmed: 27388585
J Thorac Oncol. 2019 May;14(5):933-939
pubmed: 30763730
Nature. 2017 Aug 31;548(7669):537-542
pubmed: 28783722
Science. 2017 Sep 8;357(6355):1014-1021
pubmed: 28798047
Oncoimmunology. 2018 May 7;7(8):e1458810
pubmed: 30221055
Oncotarget. 2017 Jun 6;8(23):38022-38043
pubmed: 28410237
Nature. 2019 Nov;575(7781):217-223
pubmed: 31666701
J Thorac Oncol. 2018 May;13(5):682-688
pubmed: 29518553
Nature. 2017 Jul 27;547(7664):413-418
pubmed: 28723893
J Transl Med. 2014 Nov 13;12:294
pubmed: 25388653
Nature. 2020 Oct;586(7827):120-126
pubmed: 32968282
Nat Rev Clin Oncol. 2019 Feb;16(2):81-104
pubmed: 30356138
Science. 2018 Feb 16;359(6377):770-775
pubmed: 29301958
PLoS One. 2019 Feb 27;14(2):e0212513
pubmed: 30811474
Clin Cancer Res. 2015 Apr 1;21(7):1639-51
pubmed: 25589619
Cell Chem Biol. 2019 Mar 21;26(3):331-339.e3
pubmed: 30639259
Cell. 2011 Mar 4;144(5):646-74
pubmed: 21376230
Nat Immunol. 2002 Nov;3(11):991-8
pubmed: 12407406
Immunity. 2021 Mar 9;54(3):437-453
pubmed: 33691134
Immunity. 2005 Oct;23(4):431-43
pubmed: 16226508
Immunity. 2016 Mar 15;44(3):609-621
pubmed: 26944201
Sci Immunol. 2020 Jan 31;5(43):
pubmed: 32005679
Cancer Immunol Res. 2019 Sep;7(9):1457-1471
pubmed: 31331945
Nature. 2014 Jun 19;510(7505):407-411
pubmed: 24919154
J Immunother Cancer. 2018 Dec 27;6(1):158
pubmed: 30587236
Immunity. 2021 Mar 9;54(3):571-585.e6
pubmed: 33497609
Sci Immunol. 2018 May 18;3(23):
pubmed: 29776993
Nature. 2017 Aug 24;548(7668):471-475
pubmed: 28813415
Nature. 2020 May;581(7806):100-105
pubmed: 32376951
Mol Cancer Ther. 2011 Feb;10(2):336-46
pubmed: 21306997
Cancer Discov. 2019 Jun;9(6):722-737
pubmed: 31015319
J Clin Oncol. 2013 Apr 20;31(12):1592-605
pubmed: 23509311
Sci Immunol. 2020 Dec 18;5(54):
pubmed: 33443027
Immunity. 2017 Dec 19;47(6):1083-1099.e6
pubmed: 29246442
Nat Commun. 2019 Apr 2;10(1):1486
pubmed: 30940805
Cell. 2016 Oct 6;167(2):397-404.e9
pubmed: 27667683
N Engl J Med. 2016 Sep 1;375(9):819-29
pubmed: 27433843
Am J Cancer Res. 2019 Jul 01;9(7):1382-1395
pubmed: 31392076
Ann Oncol. 2017 Aug 1;28(8):1776-1787
pubmed: 28838216
Cell. 2019 Jul 25;178(3):585-599.e15
pubmed: 31303383
Cell Rep. 2016 Sep 13;16(11):2829-2837
pubmed: 27626654

Auteurs

Jaclyn Sceneay (J)

Mechanisms of Cancer Resistance Thematic Research Center, Bristol Myers Squibb, 100 Binney Street, Cambridge, MA 02142, U.S.A.

Charles Sinclair (C)

Mechanisms of Cancer Resistance Thematic Research Center, Bristol Myers Squibb, 100 Binney Street, Cambridge, MA 02142, U.S.A.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH