PRMT5 Selective Inhibitor Enhances Therapeutic Efficacy of Cisplatin in Lung Cancer Cells.
Antineoplastic Agents
/ pharmacology
Apoptosis
Cell Cycle
Cell Proliferation
Cisplatin
/ pharmacology
Drug Synergism
Enzyme Inhibitors
/ pharmacology
Gene Expression Regulation, Neoplastic
/ drug effects
Humans
Lung Neoplasms
/ drug therapy
Naphthalenesulfonates
/ pharmacology
Protein-Arginine N-Methyltransferases
/ antagonists & inhibitors
Tumor Cells, Cultured
Urea
/ analogs & derivatives
A549 and DMS 53
HBEpC
PRMT5
cisplatin
epigenetics
histone
lung cancer
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
07 Jun 2021
07 Jun 2021
Historique:
received:
10
05
2021
revised:
25
05
2021
accepted:
04
06
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
27
7
2021
Statut:
epublish
Résumé
As a therapeutic approach, epigenetic modifiers have the potential to enhance the efficacy of chemotherapeutic agents. Protein arginine methyltransferase 5 (PRMT5), highly expressed in lung adenocarcinoma, was identified to be involved in tumorigenesis. In the current study, we examined the potential antineoplastic activity of PRMT5 inhibitor, arginine methyltransferase inhibitor 1 (AMI-1), and cisplatin on lung adenocarcinoma. Bioinformatic analyses identified apoptosis, DNA damage, and cell cycle progression as the main PRMT5-associated functional pathways, and survival analysis linked the increased PRMT5 gene expression to worse overall survival in lung adenocarcinoma. Combined AMI-1 and cisplatin treatment significantly reduced cell viability and induced apoptosis. Cell cycle arrest in A549 and DMS 53 cells was evident after AMI-1, and was reinforced after combination treatment. Western blot analysis showed a reduction in demethylation histone 4, a PRMT5- downstream target, after treatment with AMI-1 alone or in combination with cisplatin. While the combination approach tackled lung cancer cell survival, it exhibited cytoprotective abilities on HBEpC (normal epithelial cells). The survival of normal bronchial epithelial cells was not affected by using AMI-1. This study highlights evidence of novel selective antitumor activity of AMI-1 in combination with cisplatin in lung adenocarcinoma cells.
Identifiants
pubmed: 34200178
pii: ijms22116131
doi: 10.3390/ijms22116131
pmc: PMC8201369
pii:
doi:
Substances chimiques
7,7'-carbonylbis(azanediyl) bis(4-hydroxynaphthalene-2-sulfonic acid
0
Antineoplastic Agents
0
Enzyme Inhibitors
0
Naphthalenesulfonates
0
Urea
8W8T17847W
PRMT5 protein, human
EC 2.1.1.319
Protein-Arginine N-Methyltransferases
EC 2.1.1.319
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : University of Sharjah
ID : Targeted grant #1801090141-P
Organisme : MBRU-AlMahmeed
ID : Research Award 2019
Références
Lung Cancer. 2005 Jul;49(1):1-12
pubmed: 15949585
Mol Cell Biol. 2004 Nov;24(21):9630-45
pubmed: 15485929
Cell Death Dis. 2014 May 29;5:e1257
pubmed: 24874729
Nat Rev Mol Cell Biol. 2008 Sep;9(9):713-24
pubmed: 18719710
PLoS One. 2012;7(8):e44033
pubmed: 22952863
Oncotarget. 2016 Nov 1;7(44):72131-72147
pubmed: 27708221
Cancer Lett. 2018 Jul 28;427:38-48
pubmed: 29679612
Cancer Lett. 2014 Jan 28;342(2):200-12
pubmed: 22546286
Oncotarget. 2014 Mar 30;5(6):1392-433
pubmed: 24722523
Cell Mol Life Sci. 2009 Jul;66(13):2109-21
pubmed: 19300908
PLoS One. 2017 Aug 14;12(8):e0181601
pubmed: 28806746
Clin Cancer Res. 2010 Jul 1;16(13):3442-51
pubmed: 20570920
EMBO J. 2012 Apr 4;31(7):1785-97
pubmed: 22327218
Nat Struct Mol Biol. 2009 Mar;16(3):304-311
pubmed: 19234465
J Chemother. 2013 Jun;25(3):162-9
pubmed: 23783141
J Transl Med. 2015 Nov 05;13:349
pubmed: 26541651
Oncol Lett. 2018 Aug;16(2):2161-2166
pubmed: 30008914
Cell Death Dis. 2013 Dec 05;4:e951
pubmed: 24309938
Mol Cell. 2009 Jan 16;33(1):1-13
pubmed: 19150423
J Urol. 2013 Jun;189(6):2327-34
pubmed: 23313194
PLoS One. 2013 Dec 18;8(12):e82241
pubmed: 24367507
J Exp Clin Cancer Res. 2019 Feb 8;38(1):64
pubmed: 30736843
Cancer Cell. 2010 Oct 19;18(4):329-40
pubmed: 20951943
Clin Cancer Res. 2017 Apr 15;23(8):1998-2005
pubmed: 27729459
J Biol Chem. 2001 Aug 31;276(35):32971-6
pubmed: 11413150
J Biol Chem. 2004 Jun 4;279(23):23892-9
pubmed: 15056663
FEBS Lett. 2005 Jan 31;579(3):683-9
pubmed: 15670829
PLoS One. 2017 Jul 26;12(7):e0181081
pubmed: 28746345
Cell Cycle. 2009 Mar 15;8(6):801-2
pubmed: 19221494
Pharmazie. 2018 May 1;73(5):269-273
pubmed: 29724292
Biochem J. 2012 Sep 1;446(2):235-41
pubmed: 22708516
Nat Cell Biol. 2008 Dec;10(12):1431-9
pubmed: 19011621
Nat Chem Biol. 2015 Jun;11(6):432-7
pubmed: 25915199
Sci Rep. 2017 Jun 22;7(1):4035
pubmed: 28642588
Nature. 2010 Aug 26;466(7310):1110-4
pubmed: 20686481
Hum Pathol. 2014 Jul;45(7):1397-405
pubmed: 24775604
CA Cancer J Clin. 2018 Nov;68(6):394-424
pubmed: 30207593
CA Cancer J Clin. 2017 Jan;67(1):7-30
pubmed: 28055103
Oncotarget. 2015 Sep 8;6(26):22799-811
pubmed: 26078354
Cell Div. 2018 Mar 20;13:3
pubmed: 29568320
Trends Cell Biol. 2008 Nov;18(11):528-35
pubmed: 18805009