Genome-Wide Analysis of Codon Usage Patterns of SARS-CoV-2 Virus Reveals Global Heterogeneity of COVID-19.
COVID-19
Codon usage bias
Coronavirus
SARS-CoV-2
heterogeneity of COVID-19
mutational bias
natural selection
Journal
Biomolecules
ISSN: 2218-273X
Titre abrégé: Biomolecules
Pays: Switzerland
ID NLM: 101596414
Informations de publication
Date de publication:
18 06 2021
18 06 2021
Historique:
received:
20
04
2021
revised:
14
06
2021
accepted:
14
06
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
16
7
2021
Statut:
epublish
Résumé
The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons' A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome's level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2.
Identifiants
pubmed: 34207362
pii: biom11060912
doi: 10.3390/biom11060912
pmc: PMC8233742
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Emerg Microbes Infect. 2016 Oct 12;5(10):e107
pubmed: 27729643
Infect Genet Evol. 2020 Jul;81:104260
pubmed: 32092483
Front Cell Dev Biol. 2020 Aug 20;8:831
pubmed: 32974353
Virol J. 2017 Jun 17;14(1):115
pubmed: 28623921
Curr Opin Microbiol. 2014 Aug;20:69-75
pubmed: 24908561
Virus Res. 2015 Jan 22;196:87-93
pubmed: 25445348
BMC Res Notes. 2012 Jan 20;5:50
pubmed: 22264264
Virus Res. 2015 Apr 16;202:41-7
pubmed: 25656063
Virus Genes. 2009 Feb;38(1):104-12
pubmed: 18958611
Clin Microbiol Infect. 2020 Jul;26(7):960-962
pubmed: 32234449
JAMA. 2020 Feb 25;323(8):707-708
pubmed: 31971553
J Med Virol. 2020 Jun;92(6):584-588
pubmed: 32083328
Virol J. 2020 Sep 14;17(1):138
pubmed: 32928234
Nucleic Acids Res. 2005 Feb 23;33(4):1141-53
pubmed: 15728743
Mol Biol Evol. 2008 Feb;25(2):339-51
pubmed: 18048402
Bioinformatics. 2012 Feb 15;28(4):464-9
pubmed: 22199388
Infect Genet Evol. 2013 Mar;14:396-400
pubmed: 23333335
Viruses. 2020 Apr 30;12(5):
pubmed: 32366025
J Infect Public Health. 2020 May;13(5):667-673
pubmed: 32340833
Nucleic Acids Res. 1987 Feb 11;15(3):1281-95
pubmed: 3547335
J Mol Biol. 1981 Feb 15;146(1):1-21
pubmed: 6167728
Nat Med. 2020 Apr;26(4):450-452
pubmed: 32284615
BMC Evol Biol. 2015 Aug 26;15:174
pubmed: 26306510
Trends Genet. 2000 Jun;16(6):276-7
pubmed: 10827456
Evol Appl. 2020 May 07;:
pubmed: 32837536
Virus Res. 2020 Oct 15;288:198113
pubmed: 32771430
Clin Infect Dis. 2020 Jul 28;71(15):713-720
pubmed: 32129843
Viruses. 2020 Feb 25;12(3):
pubmed: 32106567
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1203-12
pubmed: 20308095
PLoS One. 2014 Jan 15;9(1):e85631
pubmed: 24454907
Heliyon. 2020 Sep;6(9):e04658
pubmed: 32844125
Virus Res. 2004 May;101(2):155-61
pubmed: 15041183
PeerJ. 2020 Jul 27;8:e9572
pubmed: 33194329
Lancet. 2020 Feb 15;395(10223):497-506
pubmed: 31986264
Antiviral Res. 2013 Oct;100(1):159-89
pubmed: 23906741
Mol Biol Evol. 2013 Jul;30(7):1720-8
pubmed: 23564938
J Virol. 2020 Jul 1;94(14):
pubmed: 32357959
Front Microbiol. 2020 May 19;11:655
pubmed: 32508755
J Mol Evol. 2006 May;62(5):551-63
pubmed: 16557338
Virus Res. 2016 Aug 2;221:58-65
pubmed: 27189042
Eur J Pharm Sci. 2020 Aug 1;151:105387
pubmed: 32454128
Virus Evol. 2020 May 14;6(1):veaa032
pubmed: 32431949
J Mol Evol. 1986;24(1-2):28-38
pubmed: 3104616
Mol Biol Evol. 2016 Jul;33(7):1870-4
pubmed: 27004904
BMC Evol Biol. 2010 Aug 19;10:253
pubmed: 20723216
Virus Res. 2003 Mar;92(1):1-7
pubmed: 12606071
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
pubmed: 7984417
Cureus. 2020 Mar 26;12(3):e7423
pubmed: 32337143
Virus Res. 2020 Jul 2;283:197976
pubmed: 32294518
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Infect Genet Evol. 2018 Mar;58:1-16
pubmed: 29198972
Virus Res. 2014 Nov 26;193:16-23
pubmed: 24675274
Proc Natl Acad Sci U S A. 1988 Apr;85(8):2653-7
pubmed: 3357886