Antidepressants with anti-tumor potential in treating glioblastoma: A narrative review.
Glioblastoma
anti-depressant
anti-tumor
brain
drug-repurposing
Journal
Fundamental & clinical pharmacology
ISSN: 1472-8206
Titre abrégé: Fundam Clin Pharmacol
Pays: England
ID NLM: 8710411
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
revised:
13
06
2021
received:
29
09
2020
accepted:
25
06
2021
pubmed:
3
7
2021
medline:
18
1
2022
entrez:
2
7
2021
Statut:
ppublish
Résumé
Glioblastoma multiforme (GBM) is known as the deadliest form of brain tumor. In addition, its high treatment resistance, heterogeneity, and invasiveness make it one of the most challenging tumors. Depression is a common psychological disorder among patients with cancer, especially GBM. Due to the high occurrence rates of depression in GBM patients and the overlap of molecular and cellular mechanisms involved in the pathogenesis of these diseases, finding antidepressants with antitumor effects could be considered as an affordable strategy for the treatment of GBM. Antidepressants exert their antitumor properties through different mechanisms. According to available evidence in this regard, some of them can eliminate the adverse effects resulting from chemo-radiotherapy in several cancers along with their synergistic effects caused by chemotherapy. Therefore, providing comprehensive insight into this issue would guide scientists and physicians in developing further preclinical studies and clinical trials, in order to evaluate antidepressants' antitumor potential. Considering that no narrative review has been recently published on this issue, specifically on these classes of drugs, we present this article with the purpose of describing the antitumor cellular mechanisms of three classes of antidepressants as follows: tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and monoamine oxidase inhibitors (MAOIs) in GBM.
Substances chimiques
Antidepressive Agents
0
Antidepressive Agents, Tricyclic
0
Monoamine Oxidase Inhibitors
0
Serotonin Uptake Inhibitors
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
35-48Informations de copyright
© 2021 Société Française de Pharmacologie et de Thérapeutique.
Références
Adamson C, Kanu OO, Mehta AI, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs. 2009;18(8):1061-1083.
Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PML, Carroll RS. Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol. 2006;79(2):125-133.
Wilson TA, Karajannis MA. Harter DH glioblastoma multiforme: state of the art and future therapeutics. Surg Neurol Int. 2014:5. https://doi.org/10.4103/2152-7806.132138
Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624-1636.
Bagó JR, Okolie O, Dumitru R, et al. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci Transl Med. 2017:9. https://doi.org/10.1126/scitranslmed.aah6510
Bastiancich C, Danhier P, Préat V, Danhier F. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release. 2016;243:29-42.
Vigliani MC, Duyckaerts C, Hauw JJ, Poisson M, Magdelenat H, Delattre JY. Dementia following treatment of brain tumors with radiotherapy administered alone or in combination with nitrosourea-based chemotherapy: a clinical and pathological study. J Neurooncol. 1999;41(2):137-149.
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1-12.
Yadavalli S, Yenugonda VM, Kesari S. Repurposed drugs in treating glioblastoma multiforme: clinical trials update. Cancer J. 2019;25:139-146.
Otto-Meyer S, Lumibao J, Kim E, et al. The interplay among psychological distress, the immune system, and brain tumor patient outcomes. Curr Opin Behav Sci. 2019;28:44-50.
Krebber AMH, Buffart LM, Kleijn G, et al. Prevalence of depression in cancer patients: a meta-analysis of diagnostic interviews and self-report instruments. Psychooncology. 2014;23(2):121-130.
Mugge L, Mansour TR, Crippen M, et al. Depression and glioblastoma, complicated concomitant diseases: a systemic review of published literature. Neurosurg Rev. 2020;43(2):497-511. https://doi.org/10.1007/s10143-018-1017-2
Rooney AG, Brown PD, Reijneveld JC, Grant R. Depression in glioma: a primer for clinicians and researchers. J Neurol Neurosurg Psychiatry. 2014;85(2):230-235.
Walker AJ, Card T, Bates TE, Muir K. Tricyclic antidepressants and the incidence of certain cancers: a study using the GPRD. Br J Cancer. 2011;104(1):193-197.
Vasilev A, Sofi R, Tong L, Teschemacher A, Kasparov S. In search of a breakthrough therapy for glioblastoma multiforme. Neuroglia. 2018;1(2):292-310.
Bielecka-Wajdman AM, Lesiak M, Ludyga T, Sieroń A, Obuchowicz E. Reversing glioma malignancy: a new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme. Cancer Chemother Pharmacol. 2017;79(6):1249-1256.
Jeon SH, Kim SH, Kim Y, et al. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem Biophys Res Commun. 2011;413(2):311-317.
Munson JM, Fried L, Rowson SA, et al. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci Transl Med. 2012;4(127):127ra36. https://doi.org/10.1126/scitranslmed.3003016
Shchors K, Massaras A, Hanahan D. Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell. 2015;28(4):456-471.
Troib A, Azab AN. Effects of psychotropic drugs on Nuclear Factor kappa B. Eur Rev Med Pharmacol Sci. 2015;19(7):1198-1208.
Higgins SC, Alagbaoso A, Javid T, Polyzoidis S, Ashkan K, Fillmore HL. P08.57 Involvement of both the extrinsic and intrinsic apoptotic pathways with clomipramine treatment of human glioblastoma cells under normoxic and hypoxic conditions. Oxford Academic; 2016.
Parker K, Pilkington GJ. Apoptosis of human malignant glioma-derived cell cultures treated with clomipramine hydrochloride, as detected by Annexin-V assay. Radiol Oncol. 2006;40:87-93.
Bilir A, Erguven M, Oktem G, et al. Potentiation of cytotoxicity by combination of imatinib and chlorimipramine in glioma. Int J Oncol. 2008;32(4):829-839.
Kast RE, Karpel-Massler G, Halatsch ME. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget. 2014;5(18):8052-8082.
Skaga E, Skaga I, Grieg Z, et al. The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy. J Cancer Res Clin Oncol. 2019;145(6):1495-1507.
Bruning A, Cappello F, Cvek B, et al. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget. 2013;4:502-530.
Song T, Li H, Tian Z, Xu C, Liu J, Guo Y. Disruption of NF-κB signaling by fluoxetine attenuates MGMT expression in glioma cells. Onco Targets Ther. 2015;8:2199-2208.
Ma J, Yang YR, Chen W, et al. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells. Oncol Rep. 2016;36(2):676-684.
Liu KH, Yang ST, Lin YK, et al. Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis. Oncotarget. 2015;6(7):5088-5101.
Choi MR, Oh DH, Kim SH, et al. Fluoxetine Up-regulates Bcl-xL expression in rat C6 glioma cells. Psychiatry Investig. 2011;8(2):161-168.
Hayashi K, Michiue H, Yamada H, et al. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Sci Rep. 2016;6:1-12.
Dikmen M, Cantürk Z, Öztürk Y. Escitalopram oxalate, a selective serotonin reuptake inhibitor, exhibits cytotoxic and apoptotic effects in glioma C6 cells. Acta Neuropsychiatr. 2011;23(4):173-178.
Chen VCH, Hsieh YH, Chen LJ, Hsu TC, Tzang BS. Escitalopram oxalate induces apoptosis in U-87MG cells and autophagy in GBM8401 cells. J Cell Mol Med. 2018;22(2):1167-1178.
Levkovitz Y, Gil-ad I, Zeldich E, et al. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines. 2005;27:29-42.
Suvà ML, Rheinbay E, Gillespie SM, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157(3):580-594.
Marcucci F, Rumio C. Lefoulon F Anti-cancer stem-like cell compounds in clinical development-an overview and critical appraisal. Front Oncol. 2016;6:1-22.
Singh MM, Manton CA, Bhat KP, et al. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors. Neuro Oncol. 2011;13(8):894-903.
Bielecka AM, Obuchowicz E. Antidepressant drugs can modify cytotoxic action of temozolomide. Eur J Cancer Care (Engl). 2017;26:1-9.
Valdés-Rives SA, Casique-Aguirre D, Germán-Castelán L, Velasco-Velázquez MA, González-Arenas A. Apoptotic signaling pathways in glioblastoma and therapeutic implications. Biomed Res Int. 2017;2017:1-12.
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.
Loreto C, La Rocca G, Anzalone R, et al. The role of intrinsic pathway in apoptosis activation and progression in Peyronie's disease. Biomed Res Int. 2014;2014:1-10.
Carrasco E, Ramrez A. Apoptosis as a therapeutic target in cancer and cancer stem cells: novel strategies and futures perspectives. Apoptosis Med. 2012. https://doi.org/10.5772/48267
Anderson G. Glioblastoma chemoresistance: roles of the mitochondrial melatonergic pathway. Cancer Drug Resist. 2020;3:334-355.
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new-repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol. 2020;98:211-223.
Zanotto-Filho A, Braganhol E, Battastini AMO, Moreira JCF. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFκB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling. Invest New Drugs. 2012;30(6):2252-2262.
Xing F, Luan Y, Cai J, et al. The anti-warburg effect elicited by the camp-pgc1α pathway drives differentiation of glioblastoma cells into astrocytes. Cell Rep. 2017;18(2):468-481.
Park G, Choi Y, Kim YS. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells. Int J Oncol. 2014;44:977-985.
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3-12.
Dunlop EA, Tee AR. MTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol. 2014;36:121-129.
Jung CH, Ro SH, Cao J, Otto NM, Kim DH. MTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287-1295.
Lefranc F, Kiss R. Autophagy. The Trojan horse to combat glioblastomas. Neurosurg Focus. 2006;20(4):E7. https://doi.org/10.3171/foc.2006.20.4.4
Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983-8998.
Díaz ME, González L, Miquet JG, et al. Growth hormone modulation of EGF-induced PI3K-Akt pathway in mice liver. Cell Signal. 2012;24(2):514-523.
Mao H, Lebrun DG, Yang J, et al. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest. 2012;30(1):48-56.
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12(1):86. https://doi.org/10.1186/1476-4598-12-86
Volcic M, Karl S, Baumann B, et al. NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res. 2012;40(1):181-195.
Dondelinger Y, Jouan-Lanhouet S, Divert T, et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell. 2015;60(1):63-76.
Puliyappadamba VT, Hatanpaa KJ, Chakraborty S, Habib AA. The role of NF-κB in the pathogenesis of glioma. Mol Cell Oncol. 2014;1(3):e963478. https://doi.org/10.4161/23723548.2014.963478
Godwin P, Baird AM, Heavey S, et al. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol. 2013;3:120. https://doi.org/10.3389/fonc.2013.00120
Mokim Ahmed K, Li JJ. NF-κB-mediated adaptive resistance to ionizing radiation. Free Radic Biol Med. 2008;44(1):1-13.
Avci NG, Ebrahimzadeh-Pustchi S, Akay YM, et al. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways. Sci Rep. 2020;10:1-14.
Bar EE. Glioblastoma, cancer stem cells and hypoxia. Brain Pathol. 2011;21(2):119-129.
Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma stem cells: driving resilience through chaos. Trends in Cancer. 2020;6(3):223-235.
Sun X, Lv X, Yan Y, et al. Hypoxia-mediated cancer stem cell resistance and targeted therapy. Biomed Pharmacother. 2020;130:110623. https://doi.org/10.1016/j.biopha.2020.110623
Zuccarini M, Giuliani P, Ziberi S, et al. The role of wnt signal in glioblastoma development and progression: A possible new pharmacological target for the therapy of this tumor. Genes (Basel). 2018;9(2):105. https://doi.org/10.3390/genes9020105
Tan SK, Jermakowicz A, Mookhtiar AK, Nemeroff CB, Schürer SC, Ayad NG. Drug repositioning in glioblastoma: a pathway perspective. Front Pharmacol. 2018;9:218. https://doi.org/10.3389/fphar.2018.00218
Higgins SC, Pelkington GJ. The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res. 2010;30(2):391-397.
Tzadok S, Beery E, Israeli M, et al. In vitro novel combinations of psychotropics and anti-cancer modalities in U87 human glioblastoma cells. Int J Oncol. 2010;37:1041-1051.
Lawrence JE, Steele CJ, Rovin RA, Belton RJ Jr, Winn RJ. Dexamethasone alone and in combination with desipramine, phenytoin, valproic acid or levetiracetam interferes with 5-ALA-mediated PpIX production and cellular retention in glioblastoma cells. J Neurooncol. 2016;127(1):15-21.
Marsh W. Amitriptyline xPharm Compr. Pharmacol Ref. 2007:1-6.
Bokil A, Sancho P. Mitochondrial determinants of chemoresistance. Cancer Drug Resist. 2019;2:634-646.
Bielecka-Wajdman AM, Ludyga T, Machnik G, et al. Tricyclic antidepressants modulate stressed mitochondria in glioblastoma multiforme cells. Cancer Control. 2018;25:1-9.
Haas R, Smith J, Rocher-Ros V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 2015;13(7):e1002202. https://doi.org/10.1371/journal.pbio.1002202
Hearn L, Derry S, Phillips T, et al. Imipramine for neuropathic pain in adults. Cochrane Database Syst Rev. 2014;2014(5):CD010769. https://doi.org/10.1002/14651858.CD010769.pub2
Fayez R, Gupta V. Imipramine. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.
Hsu F-T, Chiang I, Wang W. Induction of apoptosis through extrinsic/intrinsic pathways and suppression of ERK/NF-κB signaling participate in anti-glioblastoma of imipramine. J Cell Mol Med. 2020;24(7):3982-4000.
Lefranc F, Pouleau HB, Rynkowski M, de Witte O. Voltage-dependent K+ channels as oncotargets in malignant gliomas. Oncotarget. 2012;3(5):516-517.
Xia Z, Bergstrand A, DePierre JW, et al. The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J Biochem Mol Toxicol. 1999;13(6):338-347.
Rossi M, Rotblat B, Ansell K, et al. High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy. Cell Death Dis. 2014;5(5):e1203. https://doi.org/10.1038/cddis.2014.113
Bongiorno-Borbone L, Giacobbe A, Compagnone M, et al. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget. 2015;6(19):16926-16938.
Daley E, Wilkie D, Loesch A, et al. Chlorimipramine: a novel anticancer agent with a mitochondrial target. Biochem Biophys Res Commun. 2005;328(2):623-632.
Keatley K, Stromei-Cleroux S, Wiltshire T, et al. Integrated approach reveals role of mitochondrial germ-line mutation F18L in respiratory chain, oxidative alterations, drug sensitivity, and patient prognosis in glioblastoma. Int J Mol Sci. 2019;20(13):3364. https://doi.org/10.3390/ijms20133364
Neubauer DN. Insomnia pharmacotherapies: pharmacodynamics, strategies, new directions, and key measures in clinical trials. Handb Behav Neurosci. 2019;30:639-648.
Tao F, Zhu J, Duan L, et al. Anti-inflammatory effects of doxepin hydrochloride against LPS-induced C6-glioma cell inflammatory reaction by PI3K-mediated Akt signaling. J Biochem Mol Toxicol. 2020;34(2):e22424. https://doi.org/10.1002/jbt.22424
Martino M, Rocchi G, Escelsior A, Fornaro M. Immunomodulation mechanism of antidepressants: interactions between serotonin/norepinephrine balance and Th1/Th2 balance. Curr Neuropharmacol. 2012;10(2):97-123.
Hernández ME, Mendieta D, Martínez-Fong D, et al. Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. Eur Neuropsychopharmacol. 2008;18(12):917-924.
Nemeroff CB, Owens MJ. Pharmacologic differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr. 2004;9(S4):23-31.
Hsu CY, Chen CY, Lin YM, Tam KW. Efficacy and safety of high-dose vs low-dose leucovorin in patients with colorectal cancer: systematic review and meta-analysis. Colorectal Dis. 2020;22(1):6-17.
Tatar O, Ilhan N, Ilhan N, Susam S, Ozercan IH. Is there any potential anticancer effect of raloxifene and fluoxetine on DMBA-induced rat breast cancer? J Biochem Mol Toxicol. 2019;33(9):e22371. https://doi.org/10.1002/jbt.22371
Marcinkute M, Afshinjavid S, Fatokun AA, Javid FA. Fluoxetine selectively induces p53-independent apoptosis in human colorectal cancer cells. Eur J Pharmacol. 2019;857:172441. https://doi.org/10.1016/j.ejphar.2019.172441
Caudill JS, Brown PD, Cerhan JH, Rummans TA. Selective serotonin reuptake inhibitors, glioblastoma multiforme, and impact on toxicities and overall survival: the Mayo clinic experience. Am J Clin Oncol. 2011;34(4):385-387.
Taler M, Miron O, Gil-Ad I, Weizman A. Neuroprotective and procognitive effects of sertraline: in vitro and in vivo studies. Neurosci Lett. 2013;550:93-97.
Kast RE. Ritonavir and disulfiram may be synergistic in lowering active interleukin-18 levels in acute pancreatitis, and thereby hasten recovery. J Pancreas. 2008;9:350-353.
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome. 2018;29(11-12):843-865. https://doi.org/10.1007/s00335-018-9777-0
Yeh WL, Lu DY, Liou HC, Fu WM. A forward loop between glioma and microglia: glioma-derived extracellular matrix-activated microglia secrete IL-18 to enhance the migration of glioma cells. J Cell Physiol. 2012;227(2):558-568.
Capozzo MA, Schillani G, Aguglia E, et al. Serotonin transporter 5-HTTLPR polymorphism and response to citalopram in terminally ill cancer patients: report of twenty-one cases. Tumori. 2009;95(4):479-483.
Pilkington GJ, Parker K, Murray SA. Approaches to mitochondrially mediated cancer therapy. Semin Cancer Biol. 2008;18(3):226-235.
Arimochi H, Morita K. Desipramine induces apoptotic cell death through nonmitochondrial and mitochondrial pathways in different types of human colon carcinoma cells. Pharmacology. 2008;81(2):164-172.
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8(9):1254-1266. https://doi.org/10.7150/ijbs.4679
Szałach ŁP, Lisowska KA, Cubała WJ. The influence of antidepressants on the immune system. Arch Immunol Ther Exp (Warsz). 2019;67:143-151.
Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumor necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206-215.
Ghosh S, Mukherjee S, Choudhury S, et al. Reactive oxygen species in the tumor niche triggers altered activation of macrophages and immunosuppression: role of fluoxetine. Cell Signal. 2015;27(7):1398-1412.
Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opin Drug Discov. 2014;9(5):567-578.
Dai J, Liao N, Shi J. Study of prevalence and influencing factors of depression in tumor patients and the therapeutic effects of fluoxetine. Eur Rev Med Pharmacol Sci. 2017;21(21):4966-4974.
Hu H, Tian M, Ding C, et al. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 2019;10:3083. https://doi.org/10.3389/fimmu.2018.03083
Lu ML, Chen TT, Kuo PH, Hsu CC, Chen CH. Effects of adjunctive fluvoxamine on metabolic parameters and psychopathology in clozapine-treated patients with schizophrenia: a 12-week, randomized, double-blind, placebo-controlled study. Schizophr Res. 2018;193:126-133.
Xu D, Wang C, Zhu X, et al. The antidepressant-like effects of fluvoxamine in mice involve the mTOR signaling in the hippocampus and prefrontal cortex. Psychiatry Res. 2020;285:112708. https://doi.org/10.1016/j.psychres.2019.112708
Ballin A, Gershon V, Tanay A, Brener J, Weizman A, Meytes D. The antidepressant fluvoxamine increases natural killer cell counts in cancer patients. Isr J Med Sci. 1997;33(11):720-723.
Yamauchi M, Tatebayashi T, Nagase K, Kojima M, Imanishi T. Chronic treatment with fluvoxamine desensitizes 5-HT2C receptor-mediated hypolocomotion in rats. Pharmacol Biochem Behav. 2004;78(4):683-689.
Tolia M, Fotineas A, Nikolaou K et al. Tolia_2014. 2014;19 819-825
Sakka L, Delétage N, Chalus M, et al. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation. Oncotarget. 2017;8(26):42789-42807.
Thakerar A, Simadri K, Alexander M, et al. Paroxetine for the treatment of intractable and persistent cough in patients diagnosed with cancer. 2019.
Wang K, Gong Q, Zhan Y, et al. Blockage of autophagic flux and induction of mitochondria fragmentation by paroxetine hydrochloride in lung cancer cells promotes apoptosis via the ROS-MAPK pathway. Front Cell Dev Biol. 2020;7:1-19.
Jang WJ, Jung SK, Vo TTL, Jeong CH. Anticancer activity of paroxetine in human colon cancer cells: Involvement of MET and ERBB3. J Cell Mol Med. 2019;23(2):1106-1115.
Ham J, Babij C, Whitfield J, et al. A c-jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron. 1995;14(5):927-939.
Hisaoka K, Nishida A, Koda T, et al. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. 2001;25-34
Rooney A. Grant R SSRIs may (or may not) be a safe treatment for depression in GBM. Am J Clin Oncol. 2012;35(1):100. https://doi.org/10.1097/COC.0b013e31820dbdef
Kushal S, Wang W, Vaikari VP, et al. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression. Oncotarget. 2016;7(12):13842-13853.
Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol. 2016;7:340. https://doi.org/10.3389/fphar.2016.00340
Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, di Lisa F. Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol. 2014;73:34-42.
Camell CD, Sander J, Spadaro O, et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature. 2017;550(7674):119-123.
Deshwal S, Di Sante M, Di Lisa F, et al. Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol. 2017;33:64-69.
Shih JC. Monoamine oxidase isoenzymes: genes, functions and targets for behavior and cancer therapy. J Neural Transm. 2018;125(11):1553-1566.
Seymour CB, Mothersill C, Mooney R, Moriarty M, Tipton KF. Monoamine oxidase inhibitors I-deprenyl and clorgyline protect nonmalignant human cells from ionising radiation and chemotherapy toxicity. Br J Cancer. 2003;89(10):1979-1986.
Culhane JC, Wang D, Yen PM, Cole PA. Comparative analysis of small molecules and histone substrate analogues as LSD1 lysine demethylase inhibitors. J am Chem Soc. 2010;132(9):3164-3176.
Niwa H, Umehara T. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics. 2017;12(5):340-352.
Ekuni D, Firth JD, Nayer T, et al. Lipopolysaccharide-induced epithelial monoamine oxidase mediates alveolar bone loss in a rat chronic wound model. Am J Pathol. 2009;175(4):1398-1409.
Wang K, Luo J, Yeh S, et al. The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration resistant prostate cancer. Nat Commun. 2020;11:1-14.
Schenk T, Chen WC, Göllner S, et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med. 2012;18(4):605-611.
Lee DH, Ryu HW, Won HR, Kwon SH. Advances in epigenetic glioblastoma therapy. Oncotarget. 2017;8(11):18577-18589.
Joshi S, Durden DL. Combinatorial approach to improve cancer immunotherapy: rational drug design strategy to simultaneously hit multiple targets to kill tumor cells and to activate the immune system. J Oncol. 2019;2019:1-18.