Quercetin promotes behavioral recovery and biomolecular changes of melanocortin-4 receptor in mice with ischemic stroke.
dorsal striatum
ischemic stroke
melanocortin-4 receptor
motor; preventable death
quercetin
Journal
Journal of basic and clinical physiology and pharmacology
ISSN: 2191-0286
Titre abrégé: J Basic Clin Physiol Pharmacol
Pays: Germany
ID NLM: 9101750
Informations de publication
Date de publication:
25 Jun 2021
25 Jun 2021
Historique:
received:
30
11
2020
accepted:
03
03
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
18
12
2021
Statut:
epublish
Résumé
Ischemic stroke is known as a common causes of disability, lower psychological well-being as well as preventable death. The pathogenesis of ischemic stroke process becomes worse immediately after oxidative stress occurs. One of the flavonoids with antioxidant abilities is quercetin. This study was aimed to investigate quercetin administration on the behavioral functions (motor and sensory) and expression of melanocortin-4 receptor (MC4R) in mice with ischemic stroke. Male ICR mice were divided into sham, stroke, stroke with quercetin 100, 150, and 200 mg/kg. The stroke model was performed by blocking the left common carotid artery for 2 h. Quercetin was intraperitoneally administered daily for seven days. Evaluation was conducted during two weeks after induction using ladder rung walking test and narrow beam test for motoric function and adhesive removal tape test for sensory function. On day-14 mice were sacrificed, MC4R expression in the dorsal striatum was determined using RT-PCR. Stroke decreased the motor, sensory function and MC4R mRNA expression in dorsal striatum. Quercetin improved motor and sensory function, and upregulated expression of MC4R. Quercetin administration after ischemic stroke improves behavioral function, possibly through the upregulation of MC4R in the brain.
Identifiants
pubmed: 34214302
pii: jbcpp-2020-0490
doi: 10.1515/jbcpp-2020-0490
doi:
Substances chimiques
Receptor, Melanocortin, Type 4
0
Quercetin
9IKM0I5T1E
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
349-355Informations de copyright
© 2021 Walter de Gruyter GmbH, Berlin/Boston.
Références
Pei, B, Yang, M, Qi, X, Shen, X, Chen, X, Zhang, F. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway. Biochem Biophys Res Commun 2016;478:199–205. https://doi.org/10.1016/j.bbrc.2016.07.068.
Ahmad, A, Khan, MM, Hoda, MN, Raza, SS, Khan, MB, Javed, H, et al.. Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem Res 2011;36:1360–71. https://doi.org/10.1007/s11064-011-0458-6.
Ahmad, N, Ahmad, R, Naqvi, AA, Alam, MA, Ashafaq, M, Abdur Rub, R, et al.. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol 2018;46:717–29. https://doi.org/10.1080/21691401.2017.1337024.
Halliwell, B. Role of free radicals in the neurodegenerative disease: therapeutic implications for antioxidant treatment. Drugs Aging 2001;18:685–716. https://doi.org/10.2165/00002512-200118090-00004.
Saleem, S, Ahmad, M, Ahmad, AS, Yousuf, S, Ansari, MA, Khan, MB, et al.. Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food 2006;9:246–53. https://doi.org/10.1089/jmf.2006.9.246.
Yousuf, S, Atif, F, Ahmad, M, Hoda, N, Ishrat, T, Khan, B, et al.. Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 2009;23:242–53. https://doi.org/10.1016/j.brainres.2008.10.068.
Anggreini, P, Ardianto, C, Rahmadi, M, Khotib, J. Quercetin attenuates acute predator stress exposure-evoked innate fear and behavioral perturbation. J Basic Clin Physiol Pharmacol 2019;30. https://doi.org/10.1515/jbcpp-2019-0242.
Panche, AN, Diwan, AD, Chandra, SR. Flavonoids: an overview. J Nutr Sci 2016;29:e47.
Dajas, F, Abin-Carriquiry, JA, Arredondo, F, Blasina, F, Echeverry, C, Martinez, M, et al.. Quercetin in brain disease: potential and limits. Neurochem Int 2015;89:140–8. https://doi.org/10.1016/j.neuint.2015.07.002.
Setyawan, D, Setiawardani, F, Zainul, A, Sari, R. PEG 8000 increases solubility and dissolution rate of quercetin in solid dispersion system. Marmara Pharm J 2018;22:259–66. https://doi.org/10.12991/mpj.2018.63.
Spaccapelo, L, Bitto, A, Galantucci, M, Ottani, A, Irrera, N, Minutoli, L, et al.. Melanocortin MC4 receptor agonists counteract late inflammatory and apoptotic responses and improve neuronal functionality after cerebral ischemia. Eur J Phamacol 2011;670:479–86. https://doi.org/10.1016/j.ejphar.2011.09.015.
Snijders, AH, Takakusaki, K, Debu, B, Lozano, AM, Krishna, V, Fasano, A, et al.. Physiology of freezing of gait. Ann Neurol 2016;80:644–59. https://doi.org/10.1002/ana.24778.
Lee, KB, Kim, JS, Hong, BY, Sul, B, Song, S, Sung, WJ, et al.. Brain lesions affecting gait recovery in stroke patients. Brain Behav 2017;7:e00868. https://doi.org/10.1002/brb3.868.
Khotib, J, Mentari, IA, Rahmadi, M, Suharjono. Erythropoietin potential as an antiapoptotic agent in ischemic stroke using unilateral right common carotid artery occlusion (RUCCAO) model. Indian J Public Health Res Dev 2019;10:1184–9. https://doi.org/10.5958/0976-5506.2019.00871.4.
Metz, GA, Whishaw, IQ. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 2002;115:169–79. https://doi.org/10.1016/s0165-0270(02)00012-2.
Allbutt, HN, Henderson, JM. Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson’s disease. J Neurosci Methods 2007;159:195–202. https://doi.org/10.1016/j.jneumeth.2006.07.006.
Freret, T, Chazalviel, L, Roussel, S, Bernaudin, M, Schumann-Bard, P, Boulouard, M. Long-term functional outcome following transient middle cerebral artery occlusion in the rat: correlation between brain damage and behavioral impairment. Behav Neurosci 2006;120:1285–98. https://doi.org/10.1037/0735-7044.120.6.1285.
Ardianto, C, Yonemochi, N, Yamamoto, S, Yang, L, Takenoya, F, Shioda, S, et al.. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons. Neuroscience 2016;320:183–93. https://doi.org/10.1016/j.neuroscience.2016.02.002.
Barrenetxe, J, Aranguren, P, Grijalba, A, Martinez-Penuela, JM, Marzo, F, Urdaneta, E. Effect of dietary quercetin and sphingomyelin on ıntestinal nutrient absorption and animal growth. Br J Nutr 2006;95:455–61. https://doi.org/10.1079/bjn20051651.
Yamamoto, Y, Oue, E. Antihypertensive effect of quercetin in rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem 2006;70:933–9. https://doi.org/10.1271/bbb.70.933.
Du, G, Zhao, Z, Chen, Y, Li, Z, Tian, Y, Liu, Z, et al.. Quercetin protects rat cortical neurons against traumatic brain ınjury. Mol Med Rep 2018;17:7859–65. https://doi.org/10.3892/mmr.2018.8801.
Chen, M, Qin, J, Chen, S, Yao, L, Zhang, L, Yin, Z, et al.. Quercetin promotes motor and sensory function recovery following sciatic nerve-crush ınjury in C57BL/6J mice. J Nutr Biochem 2017;46:57–67. https://doi.org/10.1016/j.jnutbio.2017.04.006.
Carniglia, L, Ramírez, D, Durand, D, Saba, J, Turati, J, Caruso, C, et al.. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediat Inflamm 2017;2017:1–23. https://doi.org/10.1155/2017/5048616.
Pandit, R, Van Der Zwaal, EM, Luijendijk, MCM, Brans, MAD, Van Rozen, AJ, Ophuis, RJAO, et al.. Central melanocortins regulate the motivation for sucrose reward. PLoS One 2015;10:1–15. https://doi.org/10.1371/journal.pone.0121768.
Mountjoy, KG, Guan, J, Elia, CJ, Sirimanne, ES, Williams, CE. Melanocortin-4 receptor messenger RNA expression is up-regulated in the non-damaged striatum following unilateral hypoxic-ischaemic brain injury. Neuroscience 1999;89:183–90. https://doi.org/10.1016/s0306-4522(98)00285-1.
Quintanilla, RA, Pérez, MJ, Aranguiz, A, Tapia-Monsalves, C, Mendez, G. Activation of the melanocortin-4 receptor prevents oxidative damage and mitochondrial dysfunction in cultured hippocampal neurons exposed to ethanol. Neurotox Res 2020.
Costa, LG, Garrick, JM, Roque, PJ, Pellacani, C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev 2016;2016:2986796. https://doi.org/10.1155/2016/2986796.
Alrawaiq, NS, Abdullah, A. A review of flavonoid quercetin: metabolism, bioactivity and antioxidant properties. Int J PharmTech Res 2014;6:933–41.