Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats.
Acetylcysteine
/ pharmacology
Animals
Antineoplastic Agents
/ adverse effects
Antioxidants
/ metabolism
Biomarkers
Cisplatin
/ adverse effects
Drug Synergism
Immunohistochemistry
Kidney
/ drug effects
Kidney Function Tests
Liver
/ drug effects
Liver Function Tests
Lycopene
/ pharmacology
Male
Oxidative Stress
/ drug effects
Protective Agents
/ pharmacology
Rats
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
07 07 2021
07 07 2021
Historique:
received:
15
02
2021
accepted:
08
06
2021
entrez:
8
7
2021
pubmed:
9
7
2021
medline:
25
11
2021
Statut:
epublish
Résumé
Cisplatin (CP) is one of the most frequently used chemotherapy agents. The objective of this design was to determine the ameliorative effect of lycopene (LP) and/or N-acetylcysteine (NAC) in rats with hepatic and renal toxicity induced by CP. Rats were divided randomly into 7 groups (7 rats/group): control vehicle group (saline only), the LP group (10 mg/kg, orally), the NAC group (150 mg/kg, orally), the CP group (7.5 mg/kg, IP on day 27), the LP-CP group, the NAC-CP group, and the LP-NAC-CP group. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (APK), and levels of urea, creatinine, and lipids (cholesterol, triglycerides, and low-density lipoprotein-cholesterol) increased after CP injection in the serum. Moreover, CP decreased levels of protein, albumin, and HDL cholesterol. Meanwhile, malondialdehyde significantly increased with a decrease in reduced glutathione, superoxide dismutase, and catalase in the liver and kidney tissues. CP also induced some pathological lesions and increased the expression of caspase-3 in the liver and kidney tissues. Administration of LP and NAC alone or in combinations ameliorated hepatorenal toxicity and apoptosis induced by CP.
Identifiants
pubmed: 34234176
doi: 10.1038/s41598-021-93196-7
pii: 10.1038/s41598-021-93196-7
pmc: PMC8263713
doi:
Substances chimiques
Antineoplastic Agents
0
Antioxidants
0
Biomarkers
0
Protective Agents
0
Cisplatin
Q20Q21Q62J
Lycopene
SB0N2N0WV6
Acetylcysteine
WYQ7N0BPYC
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13979Références
Elkomy, A. et al. L-Carnitine mitigates oxidative stress and disorganization of cytoskeleton intermediate filaments in cisplatin-induced hepato-renal toxicity in rats. Front. Pharmacol. 11, 574441 (2020).
pubmed: 33117167
pmcid: 7552923
doi: 10.3389/fphar.2020.574441
Sallam, A. O. et al. The ameliorative effects of L-carnitine against Cisplatin induced gonadal toxicity in rats. Pak Vet. 41(1), 147–151 (2021).
doi: 10.29261/pakvetj/2020.082
Antunes, L. M. G., Darin, J. D. A. C. & Bianchi, M. D. L. P. Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol. Res. 41(4), 405–411 (2000).
pubmed: 10704263
doi: 10.1006/phrs.1999.0600
Alhoshani, A. R. et al. Protective effect of rutin supplementation against cisplatin-induced Nephrotoxicity in rats. BMC Nephrol. 18(1), 194 (2017).
pubmed: 28619064
pmcid: 5472980
doi: 10.1186/s12882-017-0601-y
Karale, S. & Kamath, J. V. Effect of daidzein on cisplatin-induced hematotoxicity and hepatotoxicity in experimental rats. Indian J. Pharmacol. 49(1), 49–54 (2017).
pubmed: 28458422
pmcid: 5351238
Boroja, T. et al. Summer savory (Satureja hortensis L.) extract: Phytochemical profile and modulation of cisplatin-induced liver, renal and testicular toxicity. Food Chem Toxicol. 118, 252–263 (2018).
pubmed: 29746935
doi: 10.1016/j.fct.2018.05.001
Neamatallah, T., El-Shitany, N. A., Abbas, A. T., Ali, S. S. & Eid, B. G. Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway. Food Funct. 9(7), 3743–3754 (2018).
pubmed: 29897076
doi: 10.1039/C8FO00653A
Mohamed, H. E. & Badawy, M. M. M. Modulatory effect of zingerone against cisplatin or γ-irradiation induced hepatotoxicity by molecular targeting regulation. Appl Radiat Isot. 154, 108891 (2019).
pubmed: 31536909
doi: 10.1016/j.apradiso.2019.108891
Abdel-Daim, M. M. et al. Impact of garlic (Allium sativum) oil on cisplatin-induced hepatorenal biochemical and histopathological alterations in rats. Total Sci. Environ. 710, 136338 (2020).
doi: 10.1016/j.scitotenv.2019.136338
El-Kordy, E. A. Effect of suramin on renal proximal tubular cells damage induced by Cisplatin in rats (histological and immunohistochemical study). J. Microsc. Ultrastruct. 7(4), 153–164 (2019).
pubmed: 31803569
pmcid: 6880320
doi: 10.4103/JMAU.JMAU_21_19
Abd El-Kader, M. & Taha, R. I. Comparative nephroprotective effects of curcumin and etoricoxib against cisplatin-induced acute kidney injury in rats. Acta Histochem. 122(4), 151534 (2020).
pubmed: 32151374
doi: 10.1016/j.acthis.2020.151534
Abdel-Razek, E. A., Abo-Youssef, A. M. & Azouz, A. A. Benzbromarone mitigates cisplatin nephrotoxicity involving enhanced peroxisome proliferator-activated receptor-alpha (PPAR-α) expression. Life Sci. 243, 117272 (2020).
pubmed: 31926251
doi: 10.1016/j.lfs.2020.117272
Barakat, L. A. A., Barakat, N., Zakaria, M. M. & Khirallah, S. M. Protective role of zinc oxide nanoparticles in kidney injury induced by cisplatin in rats. Life Sci. 262, 118503 (2020).
pubmed: 33007311
doi: 10.1016/j.lfs.2020.118503
Sadeghi, H. et al. Antioxidant and protective effect of Stachys pilifera Benth against nephrotoxicity induced by cisplatin in rats. J. Food Biochem. 44(5), e13190 (2020).
pubmed: 32155675
doi: 10.1111/jfbc.13190
Müller, L., Fröhlich, K. & Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 129, 139–148 (2011).
doi: 10.1016/j.foodchem.2011.04.045
Friedman, M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 61, 9534–9550 (2013).
pubmed: 24079774
doi: 10.1021/jf402654e
Abdel-Daim, M. M. et al. Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia. Oreochromis niloticus. Environ. Toxicol. Pharmacol. 69, 44–50 (2019).
pubmed: 30953933
doi: 10.1016/j.etap.2019.03.016
Palabiyik, S. S. et al. Protective effect of lycopene against ochratoxin A induced renal oxidative stress and apoptosis in rats. Exp. Toxicol. Pathol. 65, 853–861 (2013).
pubmed: 23332503
doi: 10.1016/j.etp.2012.12.004
Hu, J., Zhang, B., Du, L., Chen, J. & Lu, Q. Resveratrol ameliorates cadmium induced renal oxidative damage and inflammation. Int. J. Clin. Exp. Med. 10, 7563–7572 (2017).
Huang, C. S. & Hu, M. L. Lycopene inhibits DNA damage and reduces hMTH1 mRNA expression in the liver of Mongolian gerbils treated with ferric nitrilotriacetate. Food Chem. Toxicol. 49, 1381–1386 (2011).
pubmed: 21421019
doi: 10.1016/j.fct.2011.03.023
Shimizu, M. H. et al. N-acetylcysteine protects against star fruit-induced acute kidney injury. Ren. Fail. 239(1), 193–202 (2017).
doi: 10.1080/0886022X.2016.1256315
Yalcin, S., Bilgili, A., Onbasilar, I., Eraslan, G. & Ozdemir, M. Synergistic action of sodium selenite and N-acetylcysteine in acetaminophen induced liver damage. Hum. Exp Toxicol. 27(5), 425–429 (2008).
pubmed: 18715889
doi: 10.1177/0960327108094612
Samuni, Y., Goldstein, S., Dean, O. & Berk, M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta. 1830(8), 4117–4129 (2013).
pubmed: 23618697
doi: 10.1016/j.bbagen.2013.04.016
Srivastava, R. K., Rahman, Q., Kashyap, M. P., Lohani, M. & Pant, A. B. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549. PLoS One. 6(9), e25767 (2011).
pubmed: 21980536
pmcid: 3183081
doi: 10.1371/journal.pone.0025767
Campos, R. et al. N-acetylcysteine prevents pulmonary edema and acute kidney injury in rats with sepsis submitted to mechanical ventilation. Am. J. Physiol. Lung Cell Mol. Physiol. 302(7), L640–L650 (2012).
pubmed: 22268121
doi: 10.1152/ajplung.00097.2011
Kumamoto, M., Sonda, T., Nagayama, K. & Tabata, M. Effects of pH and metal ions on antioxidative activities of catechins. Biosci. Biotechnol. Biochem. 65, 126–132 (2001).
pubmed: 11272815
doi: 10.1271/bbb.65.126
Pendyala, L. & Creaven, P. J. Pharmacokinetic and pharmacodynamic studies of N-acetylcysteine, a potential chemopreventive agent during phase 1 trial. Cancer Epidemiol. Biomarkers Prev. 4, 245–251 (1995).
pubmed: 7606199
Wang, Q., Wang, X., An, J., Wang, C. & Wang, F. Lycopene’s protective effect on oxidative damage of L02 cells and its mechanism. Wei Sheng Yan Jiu. 47(2), 281–306 (2018).
pubmed: 29903284
Feng, D. et al. Ameliorative effects of N-acetylcysteine on fluoride-induced oxidative stress and DNA damage in male rats’ testis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 792, 35–45 (2015).
pubmed: 26433260
doi: 10.1016/j.mrgentox.2015.09.004
Adeyemi, O.O., Ishola, I.O., Ajani, I.D. (2017). Citrullus colocynthis Linn. Fruit extract ameliorates cisplatin-induced hepato-renal toxicity in rats. J. Complement. Integr. Med. 15(1):/j/jcim.2018.15.issue-1/jcim-2017–0086/jcim-2017–0086.xml.
Bancroft, J., Stevens, A., Turner, D. (1996). Theory and practice of histological techniques: churchill livingstone New York. the text. p. 766
Li, C. Y. et al. Urinary metabolomics reveals the therapeutic effect of HuangQi Injections in cisplatin-induced nephrotoxic rats. Sci. Rep. 7(1), 1–12 (2017).
Zhu, X., Jiang, X., Li, A., Zhao, Z. & Li, S. S-Allylmercaptocysteine attenuates cisplatin-induced nephrotoxicity through suppression of apoptosis, oxidative stress, and inflammation. Nutrients 9(2), 166 (2017).
pmcid: 5331597
doi: 10.3390/nu9020166
Rjeibi, I. et al. Lycium europaeum extract: A new potential antioxidant source against cisplatin-induced liver and kidney injuries in mice. Oxid. Med. Cell Longev. 2018, 1630751 (2018).
pubmed: 30254713
pmcid: 6145318
doi: 10.1155/2018/1630751
Ahmad, S. et al. Quantification of berberine in berberis vulgaris l. root extract and its curative and prophylactic role in cisplatin-induced in vivo toxicity and in vitro cytotoxicity. Antioxidants 8(6), 185 (2019).
pmcid: 6616455
doi: 10.3390/antiox8060185
Kumburovic, I. et al. Antioxidant effects of Satureja hortensis L. attenuate the anxiogenic effect of cisplatin in rats. Oxid. Med. Cell Longev. 2019, 8307196 (2019).
pubmed: 31467638
pmcid: 6701305
doi: 10.1155/2019/8307196
Abo-Elmaaty, A. M. A., Behairy, A., El-Naseery, N. I. & Abdel-Daim, M. M. The protective efficacy of vitamin E and cod liver oil against cisplatin-induced acute kidney injury in rats. Environ. Sci. Pollut. Res. Int. 27(35), 44412–44426 (2020).
pubmed: 32767013
doi: 10.1007/s11356-020-10351-9
Cayir, K. et al. Protective effect of L-carnitine against cisplatin-induced liver and kidney oxidant injury in rats. Cent. Eur. J. Med. 4(2), 184–191 (2009).
Abuzinadah, M. F. & Ahmad, A. Pharmacological studies on the efficacy of a thymoquinone-containing novel polyherbal formulation against cisplatin-induced hepatorenal toxicity in rats. J. Food Biochem. 44(2), e13131 (2020).
pubmed: 31876968
doi: 10.1111/jfbc.13131
Sen, S., De, B., Devanna, N. & Chakraborty, R. Cisplatin induced nephrotoxicity in mice: protective role of Leea asiatica leaves. Ren Fail. 35(10), 1412–1417 (2013).
pubmed: 24001301
doi: 10.3109/0886022X.2013.829405
Atawodi, S. E., Yakubu, O. E., Liman, M. L. & Iliemene, D. U. Effect of methanolic extract of Tetrapleura tetraptera (Schum and Thonn) Taub leaves on hyperglycemia and indices of diabetic complications in alloxan-induced diabetic rats. Asian Pac. J. Trop. Biomed. 4(4), 272–278 (2014).
pubmed: 25182550
pmcid: 3929789
doi: 10.12980/APJTB.4.2014C73
Akindele, J. A., Iyamu, A. E., Dutt, P., Satti, K. N. & Adeyemi, O. O. Ameliorative effect of hydroethanolic leaf extract of Byrsocarpus coccineus in alcohol- and sucroseinduced hypertension in rats. J. Tradit. Complement Med. 4(3), 177–188 (2014).
pubmed: 25161923
pmcid: 4142456
doi: 10.4103/2225-4110.129562
Manninen, V. et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study: implications for treatment. Circulation 85, 37–45 (2002).
doi: 10.1161/01.CIR.85.1.37
Lin, C. C., Yin, M. C., Hsu, C. C. & Lin, M. P. Effect of five cysteine-containing compounds on three lipogenic enzymes in Balb/cA mice consuming a high saturated fat diet. Lipids 39(9), 843–848 (2004).
pubmed: 15669759
doi: 10.1007/s11745-004-1305-4
Sheriff, S. A. et al. Lycopene prevents mitochondrial dysfunction during d-galactosamine/lipopolysaccharide induced fulminant hepatic failure in albino rats. J. Proteome Res. 16(9), 3190–3199 (2017).
pubmed: 28758404
doi: 10.1021/acs.jproteome.7b00176
Abdel-Wahab, W. M., Moussa, F. I. & Saad, N. A. Synergistic protective effect of N-acetylcysteine and taurine against cisplatin-induced nephrotoxicity in rats. Drug Des. Devel. Ther. 11, 901–908 (2017).
pubmed: 28356716
pmcid: 5367759
doi: 10.2147/DDDT.S131316
Conesa, E. L. et al. N-acetylcysteine improves renal medullary hypoperfusion in acute renal failure. Am. J. Physiol. 281(3), R730–R737 (2001).
Abdelrahman, A. M. et al. N-acetylcysteine improves renal hemodynamics in rats with cisplatin-induced nephrotoxicity. J. Appl. Toxicol. 30(1), 15–21 (2010).
pubmed: 19681060
doi: 10.1002/jat.1465
Abdel-Daim, M. M. et al. Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia. Oreochromis niloticus. Environ. Toxicol. Pharmacol. 69, 44–50 (2019).
pubmed: 30953933
doi: 10.1016/j.etap.2019.03.016
Saha, L., Kaur, S. & Saha, P. K. N-acetyl cysteine in clomiphene citrate resistant polycystic ovary syndrome: a review of reported outcomes. J. Pharmacol. Pharmacother. 4, 187–191 (2013).
pubmed: 23960423
pmcid: 3746301
doi: 10.4103/0976-500X.114597
Perše, M. & Večerić-Haler, Ž. Cisplatin-induced rodent model of kidney injury: characteristics and challenges. Biomed. Res. Int. 2018, 1462802 (2018).
pubmed: 30276200
pmcid: 6157122
doi: 10.1155/2018/1462802
Liu, H. et al. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy. Acta Pharmacol. Sin. 37(2), 235–245 (2016).
pubmed: 26775661
pmcid: 4753365
doi: 10.1038/aps.2015.114
Miller, R. P., Tadagavadi, R. K., Ramesh, G. & Reeves, W. B. Mechanisms of Cisplatin Nephrotoxicity. Toxins 2(11), 2490–2518 (2010).
pubmed: 22069563
pmcid: 3153174
doi: 10.3390/toxins2112490
Jiang, W., Guo, Mh. & Hai, X. Hepatoprotective and antioxidant effects of lycopene on non-alcoholic fatty liver disease in rat. World J. Gastroenterol. 22(46), 10180–10188 (2016).
pubmed: 28028366
pmcid: 5155177
doi: 10.3748/wjg.v22.i46.10180
De Vries, N. & De Flora, S. N-acetylcysteine. J. Cell Biochem. 17F, 270–277 (1993).
Appenroth, D., Winnefeld, K., Schroter, H. & Rost, M. Beneficial effect of N-acetylcysteine on cisplatin nephrotoxicity in rats. J. Appl. Toxicol. 13(3), 189–192 (1993).
pubmed: 8326088
doi: 10.1002/jat.2550130309
Zhao, C. & Shichi, H. Prevention of acetaminophen-induced cataract by a combination of diallyl disulfide and N-acetylcysteine. J. Ocul. Pharmacol. Ther. 14(4), 345–355 (1998).
pubmed: 9715438
doi: 10.1089/jop.1998.14.345