Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
07 2021
Historique:
received: 02 04 2020
accepted: 27 05 2021
entrez: 9 7 2021
pubmed: 10 7 2021
medline: 21 9 2021
Statut: ppublish

Résumé

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.

Identifiants

pubmed: 34239102
doi: 10.1038/s41592-021-01197-1
pii: 10.1038/s41592-021-01197-1
pmc: PMC8592384
mid: NIHMS1752614
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

747-756

Subventions

Organisme : NIEHS NIH HHS
ID : U2C ES030167
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM130385
Pays : United States
Organisme : NHGRI NIH HHS
ID : U54 HG010426
Pays : United States
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P001742/1
Pays : United Kingdom
Organisme : NIGMS NIH HHS
ID : R35 GM131877
Pays : United States
Organisme : NCI NIH HHS
ID : U2C CA233311
Pays : United States

Références

Doerr, A. Global metabolomics. Nat. Methods 14, 32 (2017).
doi: 10.1038/nmeth.4112
Fessenden, M. Metabolomics: small molecules, single cells. Nature 540, 153–155 (2016).
pubmed: 27905420 doi: 10.1038/540153a
Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378 (1998).
pubmed: 9744112 doi: 10.1016/S0167-7799(98)01214-1
Alseekh, S. & Fernie, A. R. Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J. 94, 933–942 (2018).
pubmed: 29734513 doi: 10.1111/tpj.13950
Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015). This paper demonstrates that the microbiota is a key factor orchestrating overall energy homeostasis during increased demand in mammals.
pubmed: 26638070 doi: 10.1016/j.cell.2015.11.004
Chu, C. et al. The microbiota regulate neuronal function and fear extinction learning. Nature 574, 543–548 (2019).
pubmed: 31645720 pmcid: 6818753 doi: 10.1038/s41586-019-1644-y
Djamei, A. et al. Metabolic priming by a secreted fungal effector. Nature 478, 395–398 (2011).
pubmed: 21976020 doi: 10.1038/nature10454
Dorr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421–425 (2013). This paper illustrates the identification of metabolite biomarkers for use in cancer diagnostics and to serve as targets for new-concept anticancer therapies.
pubmed: 23945590 doi: 10.1038/nature12437
Fernie, A. R., Trethewey, R. N., Krotzky, A. J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).
pubmed: 15340383 doi: 10.1038/nrm1451
Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 4, e100282 (2008).
doi: 10.1371/journal.pgen.1000282
Guijas, C., Montenegro-Burke, J. R., Warth, B., Spilker, M. E. & Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 36, 316–320 (2018).
pubmed: 29621222 pmcid: 5937131 doi: 10.1038/nbt.4101
Lu, W. et al. Metabolite measurement: pitfalls to avoid and practices to follow. Annu. Rev. Biochem. 86, 277–304 (2017). A useful and comprehensive review highlighting the pitfalls encountered in metabolomics and providing guidelines for accurate metabolite measurements.
pubmed: 28654323 pmcid: 5734093 doi: 10.1146/annurev-biochem-061516-044952
Mashego, M. R. et al. Microbial metabolomics: past, present and future methodologies. Biotechnol. Lett. 29, 1–16 (2007).
pubmed: 17091378 doi: 10.1007/s10529-006-9218-0
Rinschen, M. M., Ivanisevic, J., Giera, M. & Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 20, 353–367 (2019).
pubmed: 30814649 pmcid: 6613555 doi: 10.1038/s41580-019-0108-4
Van Gulik, W. M. et al. Fast sampling of the cellular metabolome. Methods Mol. Biol. 881, 279–306 (2012).
pubmed: 22639217 doi: 10.1007/978-1-61779-827-6_10
Delzenne, N. M. & Bindels, L. B. Microbiome metabolomics reveals new drivers of human liver steatosis. Nat. Med. 24, 906–907 (2018).
pubmed: 29988145 doi: 10.1038/s41591-018-0126-3
Guo, A. C. et al. ECMDB: the E. coli metabolome database. Nucleic Acids Res. 41, D625–D630 (2013).
pubmed: 23109553 doi: 10.1093/nar/gks992
Sajed, T. et al. ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 44, D495–D501 (2016).
pubmed: 26481353 doi: 10.1093/nar/gkv1060
Hautbergue, T., Jamin, E. L., Debrauwer, L., Puel, O. & Oswald, I. P. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat. Prod. Rep. 35, 147–173 (2018).
pubmed: 29384544 doi: 10.1039/C7NP00032D
Ramirez-Gaona, M. et al. YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 45, D440–D445 (2017).
pubmed: 27899612 doi: 10.1093/nar/gkw1058
Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018). The database described is a groundbreaking, comprehensive and freely available web resource containing detailed information about the human metabolome.
pubmed: 29140435 doi: 10.1093/nar/gkx1089
Saito, K. & Matsuda, F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 61, 463–489 (2010).
pubmed: 19152489 doi: 10.1146/annurev.arplant.043008.092035
Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A. R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1, 387–396 (2006).
pubmed: 17406261 doi: 10.1038/nprot.2006.59
Tohge, T. & Fernie, A. R. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat. Protoc. 5, 1210–1227 (2010).
pubmed: 20539294 doi: 10.1038/nprot.2010.82
van Gulik, W. M. Fast sampling for quantitative microbial metabolomics. Curr. Opin. Biotechnol. 21, 27–34 (2010).
pubmed: 20149631 doi: 10.1016/j.copbio.2010.01.008
Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 403, 1523–1548 (2012).
pubmed: 22576654 doi: 10.1007/s00216-012-6039-y
Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
pubmed: 19015660 pmcid: 2949280 doi: 10.1038/nrg2484
Bennett, B. D., Yuan, J., Kimball, E. H. & Rabinowitz, J. D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3, 1299–1311 (2008).
pubmed: 18714298 pmcid: 2710577 doi: 10.1038/nprot.2008.107
Li, B. et al. NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res. 45, W162–W170 (2017).
pubmed: 28525573 pmcid: 5570188 doi: 10.1093/nar/gkx449
Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).
pubmed: 11860207 doi: 10.1023/A:1013713905833
Papadimitropoulos, M. P., Vasilopoulou, C. G., Maga-Nteve, C. & Klapa, M. I. Untargeted GC–MS metabolomics. Methods Mol. Biol. 1738, 133–147 (2018).
pubmed: 29654587 doi: 10.1007/978-1-4939-7643-0_9
Fiehn, O. et al. The metabolomics Standards Initiative (MSI). Metabolomics 3, 175–178 (2007). A brief report outlining the history, stature and intentions of MSI, an authorative standards initiative for metabolomics.
doi: 10.1007/s11306-007-0070-6
Haug, K. et al. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, D781–D786 (2013).
pubmed: 23109552 doi: 10.1093/nar/gks1004
Salek, R. M., Haug, K. & Steinbeck, C. Dissemination of metabolomics results: role of MetaboLights and COSMOS. GigaScience 2, 8 (2013).
pubmed: 23683662 pmcid: 3658998 doi: 10.1186/2047-217X-2-8
Steinbeck, C. et al. MetaboLights: towards a new COSMOS of metabolomics data management. Metabolomics 8, 757–760 (2012).
pubmed: 23060735 pmcid: 3465651 doi: 10.1007/s11306-012-0462-0
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).
pubmed: 24039616 pmcid: 3772505 doi: 10.1007/s11306-007-0082-2
Sansone, S. A. et al. The Metabolomics Standards Initiative. Nat. Biotechnol. 25, 846–848 (2007). This article highlights two standards and guidelines papers for MS and sample preparation by the Human Proteome Organization Proteomics Standardization Initiative (HUPO-PSI) and the Functional Genomics Experiment (FuGE) and describes how metabolomics standards should align to these.
pubmed: 17687353 doi: 10.1038/nbt0807-846b
Spicer, R. A., Salek, R. & Steinbeck, C. A decade after the Metabolomics Standards Initiative: it’s time for a revision. Sci. Data 4, 3 (2017).
doi: 10.1038/sdata.2017.138
Fernie, A. R. et al. Recommendations for reporting metabolite data. Plant Cell 23, 2477–2482 (2011).
pubmed: 21771932 pmcid: 3226225 doi: 10.1105/tpc.111.086272
Aksenov, A. A. et al. A machine learning workflow enables automatic deconvolution of GC-MS data. Nat. Biotechnol. 39, 169–173 (2021).
pubmed: 33169034 doi: 10.1038/s41587-020-0700-3
Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).
pubmed: 32405051 doi: 10.1038/s41596-020-0317-5
Blaženović, I. et al. Structure annotation of all mass spectra in untargeted metabolomics. Anal. Chem. 91, 2155–2162 (2019).
pubmed: 30608141 doi: 10.1021/acs.analchem.8b04698
Buendia, P. et al. Ontology-based metabolomics data integration with quality control. Bioanalysis 11, 1139–1155 (2019).
pubmed: 31179719 pmcid: 6661928 doi: 10.4155/bio-2018-0303
Hoffmann, N. et al. mzTab-M: a data standard for sharing quantitative results in mass spectrometry metabolomics. Anal. Chem. 91, 3302–3310 (2019).
pubmed: 30688441 pmcid: 6660005 doi: 10.1021/acs.analchem.8b04310
Jarmusch, A. K. et al. ReDU: a framework to find and reanalyze public mass spectrometry data. Nat. Methods 17, 901–904 (2020). This tool enables the capture of public MS-based metabolomics data and their subsequent reanalysis.
pubmed: 32807955 pmcid: 7968862 doi: 10.1038/s41592-020-0916-7
Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).
pubmed: 32839597 pmcid: 7885687 doi: 10.1038/s41592-020-0933-6
Tsugawa, H. et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 16, 295–298 (2019).
pubmed: 30923379 doi: 10.1038/s41592-019-0358-2
Huan, T. et al. Systems biology guided by XCMS Online metabolomics. Nat. Methods 14, 461–462 (2017).
pubmed: 28448069 pmcid: 5933448 doi: 10.1038/nmeth.4260
Patel, V. R., Eckel-Mahan, K., Sassone-Corsi, P. & Baldi, P. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat. Methods 9, 772–773 (2012).
pubmed: 22847108 doi: 10.1038/nmeth.2111
Palladino, G. W., Wood, J. J. & Proctor, H. J. Modified freeze clamp technique for tissue assay. J. Surg. Res. 28, 188–190 (1980).
pubmed: 7359915 doi: 10.1016/0022-4804(80)90161-4
Tohge, T. et al. From models to crop species: caveats and solutions for translational metabolomics. Front. Plant Sci. 2, 61 (2011).
pubmed: 22639601 pmcid: 3355600 doi: 10.3389/fpls.2011.00061
Trutschel, D., Schmidt, S., Grosse, I. & Neumann, S. Experiment design beyond gut feeling: statistical tests and power to detect differential metabolites in mass spectrometry data. Metabolomics 11, 851–860 (2015).
doi: 10.1007/s11306-014-0742-y
Sanchez, D. H., Szymanski, J., Erban, A., Udvardi, M. K. & Kopka, J. Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. Plant Cell Environ. 33, 468–480 (2010).
pubmed: 19781009 doi: 10.1111/j.1365-3040.2009.02047.x
Chen, W. et al. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nat. Commun. 7, 12767 (2016).
pubmed: 27698483 pmcid: 5059443 doi: 10.1038/ncomms12767
Fuhrer, T., Zampieri, M., Sevin, D. C., Sauer, U. & Zamboni, N. Genomewide landscape of gene–metabolome associations in Escherichia coli. Mol. Syst. Biol. 13, 907 (2017).
pubmed: 28093455 pmcid: 5293155 doi: 10.15252/msb.20167150
Hartiala, J. A. et al. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat. Commun. 7, 10558 (2016).
pubmed: 26822151 pmcid: 4740183 doi: 10.1038/ncomms10558
Alseekh, S., Wu, S., Brotman, Y. & Fernie, A. R. Guidelines for sample normalization to minimize batch variation for large-scale metabolic profiling of plant natural genetic variance. Methods Mol. Biol. 1778, 33–46 (2018).
pubmed: 29761429 doi: 10.1007/978-1-4939-7819-9_3
Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).
pubmed: 21720319 doi: 10.1038/nprot.2011.335
Griffin, J. L. et al. Standard reporting requirements for biological samples in metabolomics experiments: mammalian/in vivo experiments. Metabolomics 3, 179–188 (2007).
doi: 10.1007/s11306-007-0077-z
Vandeputte, D., Tito, R. Y., Vanleeuwen, R., Falony, G. & Raes, J. Practical considerations for large-scale gut microbiome studies. FEMS Microbiol. Rev. 41, S154–S167 (2017).
pubmed: 28830090 pmcid: 7207147 doi: 10.1093/femsre/fux027
Wehrens, R. et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics 12, 88 (2016).
pubmed: 27073351 pmcid: 4796354 doi: 10.1007/s11306-016-1015-8
Cui, Q. et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 26, 162–164 (2008).
pubmed: 18259166 doi: 10.1038/nbt0208-162
Nakamura, Y. et al. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 55, e7 (2014).
pubmed: 24285751 doi: 10.1093/pcp/pct176
Tautenhahn, R. et al. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol. 30, 826–828 (2012).
pubmed: 22965049 pmcid: 3666346 doi: 10.1038/nbt.2348
Vinaixa, M. et al. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trac-Trends Anal. Chem. 78, 23–35 (2016).
doi: 10.1016/j.trac.2015.09.005
Zhu, Z. J. et al. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 8, 451–460 (2013).
pubmed: 23391889 pmcid: 3666335 doi: 10.1038/nprot.2013.004
Niebel, B., Leupold, S. & Heinemann, M. An upper limit on Gibbs energy dissipation governs cellular metabolism. Nat. Metab. 1, 125–132 (2019).
pubmed: 32694810 doi: 10.1038/s42255-018-0006-7
Jourdan, F., Breitling, R., Barrett, M. P. & Gilbert, D. MetaNetter: inference and visualization of high-resolution metabolomic networks. Bioinformatics 24, 143–145 (2008).
pubmed: 18003642 doi: 10.1093/bioinformatics/btm536
Pirhaji, L. et al. Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat. Methods 13, 770–776 (2016).
pubmed: 27479327 pmcid: 5209295 doi: 10.1038/nmeth.3940
Shen, X. T. et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat. Commun. 10, 1516 (2019). This represents an important example of a tool using a metabolic reaction network that expands metabolite annotations without the need for a comprehensive standard spectral library.
Kummel, A., Panke, S. & Heinemann, M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2, 2006.0034 (2006).
pubmed: 16788595 pmcid: 1681506 doi: 10.1038/msb4100074
Ap Rees, T. & Hill, S. A. Metabolic control analysis of plant metabolism. Plant Cell Environ. 17, 587–599 (1994).
doi: 10.1111/j.1365-3040.1994.tb00151.x
Arrivault, S. et al. Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J. 59, 826–839 (2009).
pubmed: 19453453 doi: 10.1111/j.1365-313X.2009.03902.x
Lu, W., Bennett, B. D. & Rabinowitz, J. D. Analytical strategies for LC–MS-based targeted metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 871, 236–242 (2008).
doi: 10.1016/j.jchromb.2008.04.031
Lunn, J. E. et al. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem. J. 397, 139–148 (2006).
pubmed: 16551270 pmcid: 1479759 doi: 10.1042/BJ20060083
Annesley, T. M. Ion suppression in mass spectrometry. Clin. Chem. 49, 1041–1044 (2003).
pubmed: 12816898 doi: 10.1373/49.7.1041
Antignac, J. P., Marchand, P., Le Bizec, B. & Andre, F. Identification of ractopamine residues in tissue and urine samples at ultra-trace level using liquid chromatography–positive electrospray tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 774, 59–66 (2002).
doi: 10.1016/S1570-0232(02)00205-2
Kebarle, P. & Tang, L. From ions in solution to ions in the gas phase—the mechanism of electrospray mass spectrometry. Anal. Chem. 65, 972A–986A (1993).
Roessner-Tunali, U. et al. De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels. Plant Physiol. 133, 683–692 (2003).
pubmed: 14512520 pmcid: 219043 doi: 10.1104/pp.103.024802
Buhrman, D. L., Price, P. I. & Rudewiczcor, P. J. Quantitation of SR 27417 in human plasma using electrospray liquid chromatography–tandem mass spectrometry: a study of ion suppression. J. Am. Soc. Mass Spectrom. 7, 1099–1105 (1996).
pubmed: 24203071 doi: 10.1016/S1044-0305(96)00072-4
Gerssen, A. et al. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 394, 1213–1226 (2009).
pubmed: 19387619 doi: 10.1007/s00216-009-2790-0
Freitas, L. G., Götz, C. W., Ruff, M., Singer, H. P. & Müller, S. R. Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1028, 277–286 (2004).
pubmed: 14989481 doi: 10.1016/j.chroma.2003.11.094
De Vijlder, T. et al. A tutorial in small molecule identification via electrospray ionization–mass spectrometry: the practical art of structural elucidation. Mass Spectrom. Rev. 37, 607–629 (2018).
pubmed: 29120505 doi: 10.1002/mas.21551
Dettmer, K., Aronov, P. A. & Hammock, B. D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26, 51–78 (2007).
pubmed: 16921475 pmcid: 1904337 doi: 10.1002/mas.20108
Tohge, T. et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42, 218–235 (2005).
pubmed: 15807784 doi: 10.1111/j.1365-313X.2005.02371.x
Shahaf, N. et al. The WEIZMASS spectral library for high-confidence metabolite identification. Nat. Commun. 7, 12423 (2016). This represents a reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites, providing great promise for addressing the question of comprehensivity in metabolomics.
pubmed: 27571918 pmcid: 5013563 doi: 10.1038/ncomms12423
Feldberg, L., Venger, I., Malitsky, S., Rogachev, I. & Aharoni, A. Dual labeling of metabolites for metabolome analysis (DLEMMA): a new approach for the identification and relative quantification of metabolites by means of dual isotope labeling and liquid chromatography–mass spectrometry. Anal. Chem. 81, 9257–9266 (2009).
pubmed: 19845344 doi: 10.1021/ac901495a
Schiffman, C. et al. Filtering procedures for untargeted LC–MS metabolomics data. BMC Bioinformatics 20, 334 (2019).
pubmed: 31200644 pmcid: 6570933 doi: 10.1186/s12859-019-2871-9
Kale, N. S. et al. MetaboLights: an open-access database repository for metabolomics data. Curr. Protoc. Bioinformatics 53, 14.13.11–14.13.18 (2016).
doi: 10.1002/0471250953.bi1413s53
Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).
pubmed: 26467476 doi: 10.1093/nar/gkv1042
Price, E. J. et al. Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops. Plant J. 101, 1258–1268 (2020). Recent exemplary documentation of a metabolomics experiment that evaluated metabolite levels in crop species, providing not only an extensive database but moreover an excellent example of how to correctly investigate understudied species.
Bino, R. J. et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9, 418–425 (2004).
pubmed: 15337491 doi: 10.1016/j.tplants.2004.07.004
Kirwan, J. A. et al. Preanalytical processing and biobanking procedures of biological samples for metabolomics research: a white paper, community perspective (for ‘Precision Medicine and Pharmacometabolomics Task Group’–The Metabolomics Society Initiative). Clin. Chem. 64, 1158–1182 (2018).
pubmed: 29921725 doi: 10.1373/clinchem.2018.287045

Auteurs

Saleh Alseekh (S)

Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany. alseekh@mpimp-golm.mpg.de.
Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria. alseekh@mpimp-golm.mpg.de.

Asaph Aharoni (A)

Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.

Yariv Brotman (Y)

Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.

Kévin Contrepois (K)

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.

John D'Auria (J)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.

Jan Ewald (J)

Department of Bioinformatics, University of Jena, Jena, Germany.

Jennifer C Ewald (J)

Interfaculty Institute of Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany.

Paul D Fraser (PD)

Biological Sciences, Royal Holloway University of London, Egham, UK.

Patrick Giavalisco (P)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Robert D Hall (RD)

BU Bioscience, Wageningen Research, Wageningen, the Netherlands.
Laboratory of Plant Physiology, Wageningen University, Wageningen, the Netherlands.

Matthias Heinemann (M)

Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.

Hannes Link (H)

Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

Jie Luo (J)

College of Tropical Crops, Hainan University, Haikou, China.

Steffen Neumann (S)

Bioinformatics and Scientific Data, Leibniz Institute for Plant Biochemistry, Halle, Germany.

Jens Nielsen (J)

BioInnovation Institute, Copenhagen, Denmark.
Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.

Leonardo Perez de Souza (L)

Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.

Kazuki Saito (K)

Plant Molecular Science Center, Chiba University, Chiba, Japan.
RIKEN Center for Sustainable Resource Science, Yokohama, Japan.

Uwe Sauer (U)

Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.

Frank C Schroeder (FC)

Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.

Stefan Schuster (S)

Department of Bioinformatics, University of Jena, Jena, Germany.

Gary Siuzdak (G)

Center for Metabolomics and Mass Spectrometry, Scripps Research Institute, La Jolla, CA, USA.

Aleksandra Skirycz (A)

Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.

Lloyd W Sumner (LW)

Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, MO, USA.

Michael P Snyder (MP)

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.

Huiru Tang (H)

State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China.

Takayuki Tohge (T)

Department of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan.

Yulan Wang (Y)

Singapore Phenome Center, Lee Kong Chian School of Medicine, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore.

Weiwei Wen (W)

Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.

Si Wu (S)

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.

Guowang Xu (G)

CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

Nicola Zamboni (N)

Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.

Alisdair R Fernie (AR)

Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany. fernie@mpimp-golm.mpg.de.
Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria. fernie@mpimp-golm.mpg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH