Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices.
Journal
Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
02
04
2020
accepted:
27
05
2021
entrez:
9
7
2021
pubmed:
10
7
2021
medline:
21
9
2021
Statut:
ppublish
Résumé
Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.
Identifiants
pubmed: 34239102
doi: 10.1038/s41592-021-01197-1
pii: 10.1038/s41592-021-01197-1
pmc: PMC8592384
mid: NIHMS1752614
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
747-756Subventions
Organisme : NIEHS NIH HHS
ID : U2C ES030167
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM130385
Pays : United States
Organisme : NHGRI NIH HHS
ID : U54 HG010426
Pays : United States
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P001742/1
Pays : United Kingdom
Organisme : NIGMS NIH HHS
ID : R35 GM131877
Pays : United States
Organisme : NCI NIH HHS
ID : U2C CA233311
Pays : United States
Références
Doerr, A. Global metabolomics. Nat. Methods 14, 32 (2017).
doi: 10.1038/nmeth.4112
Fessenden, M. Metabolomics: small molecules, single cells. Nature 540, 153–155 (2016).
pubmed: 27905420
doi: 10.1038/540153a
Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378 (1998).
pubmed: 9744112
doi: 10.1016/S0167-7799(98)01214-1
Alseekh, S. & Fernie, A. R. Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J. 94, 933–942 (2018).
pubmed: 29734513
doi: 10.1111/tpj.13950
Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015). This paper demonstrates that the microbiota is a key factor orchestrating overall energy homeostasis during increased demand in mammals.
pubmed: 26638070
doi: 10.1016/j.cell.2015.11.004
Chu, C. et al. The microbiota regulate neuronal function and fear extinction learning. Nature 574, 543–548 (2019).
pubmed: 31645720
pmcid: 6818753
doi: 10.1038/s41586-019-1644-y
Djamei, A. et al. Metabolic priming by a secreted fungal effector. Nature 478, 395–398 (2011).
pubmed: 21976020
doi: 10.1038/nature10454
Dorr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421–425 (2013). This paper illustrates the identification of metabolite biomarkers for use in cancer diagnostics and to serve as targets for new-concept anticancer therapies.
pubmed: 23945590
doi: 10.1038/nature12437
Fernie, A. R., Trethewey, R. N., Krotzky, A. J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).
pubmed: 15340383
doi: 10.1038/nrm1451
Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 4, e100282 (2008).
doi: 10.1371/journal.pgen.1000282
Guijas, C., Montenegro-Burke, J. R., Warth, B., Spilker, M. E. & Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 36, 316–320 (2018).
pubmed: 29621222
pmcid: 5937131
doi: 10.1038/nbt.4101
Lu, W. et al. Metabolite measurement: pitfalls to avoid and practices to follow. Annu. Rev. Biochem. 86, 277–304 (2017). A useful and comprehensive review highlighting the pitfalls encountered in metabolomics and providing guidelines for accurate metabolite measurements.
pubmed: 28654323
pmcid: 5734093
doi: 10.1146/annurev-biochem-061516-044952
Mashego, M. R. et al. Microbial metabolomics: past, present and future methodologies. Biotechnol. Lett. 29, 1–16 (2007).
pubmed: 17091378
doi: 10.1007/s10529-006-9218-0
Rinschen, M. M., Ivanisevic, J., Giera, M. & Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 20, 353–367 (2019).
pubmed: 30814649
pmcid: 6613555
doi: 10.1038/s41580-019-0108-4
Van Gulik, W. M. et al. Fast sampling of the cellular metabolome. Methods Mol. Biol. 881, 279–306 (2012).
pubmed: 22639217
doi: 10.1007/978-1-61779-827-6_10
Delzenne, N. M. & Bindels, L. B. Microbiome metabolomics reveals new drivers of human liver steatosis. Nat. Med. 24, 906–907 (2018).
pubmed: 29988145
doi: 10.1038/s41591-018-0126-3
Guo, A. C. et al. ECMDB: the E. coli metabolome database. Nucleic Acids Res. 41, D625–D630 (2013).
pubmed: 23109553
doi: 10.1093/nar/gks992
Sajed, T. et al. ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 44, D495–D501 (2016).
pubmed: 26481353
doi: 10.1093/nar/gkv1060
Hautbergue, T., Jamin, E. L., Debrauwer, L., Puel, O. & Oswald, I. P. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat. Prod. Rep. 35, 147–173 (2018).
pubmed: 29384544
doi: 10.1039/C7NP00032D
Ramirez-Gaona, M. et al. YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 45, D440–D445 (2017).
pubmed: 27899612
doi: 10.1093/nar/gkw1058
Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018). The database described is a groundbreaking, comprehensive and freely available web resource containing detailed information about the human metabolome.
pubmed: 29140435
doi: 10.1093/nar/gkx1089
Saito, K. & Matsuda, F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 61, 463–489 (2010).
pubmed: 19152489
doi: 10.1146/annurev.arplant.043008.092035
Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A. R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1, 387–396 (2006).
pubmed: 17406261
doi: 10.1038/nprot.2006.59
Tohge, T. & Fernie, A. R. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat. Protoc. 5, 1210–1227 (2010).
pubmed: 20539294
doi: 10.1038/nprot.2010.82
van Gulik, W. M. Fast sampling for quantitative microbial metabolomics. Curr. Opin. Biotechnol. 21, 27–34 (2010).
pubmed: 20149631
doi: 10.1016/j.copbio.2010.01.008
Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 403, 1523–1548 (2012).
pubmed: 22576654
doi: 10.1007/s00216-012-6039-y
Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
pubmed: 19015660
pmcid: 2949280
doi: 10.1038/nrg2484
Bennett, B. D., Yuan, J., Kimball, E. H. & Rabinowitz, J. D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3, 1299–1311 (2008).
pubmed: 18714298
pmcid: 2710577
doi: 10.1038/nprot.2008.107
Li, B. et al. NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res. 45, W162–W170 (2017).
pubmed: 28525573
pmcid: 5570188
doi: 10.1093/nar/gkx449
Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).
pubmed: 11860207
doi: 10.1023/A:1013713905833
Papadimitropoulos, M. P., Vasilopoulou, C. G., Maga-Nteve, C. & Klapa, M. I. Untargeted GC–MS metabolomics. Methods Mol. Biol. 1738, 133–147 (2018).
pubmed: 29654587
doi: 10.1007/978-1-4939-7643-0_9
Fiehn, O. et al. The metabolomics Standards Initiative (MSI). Metabolomics 3, 175–178 (2007). A brief report outlining the history, stature and intentions of MSI, an authorative standards initiative for metabolomics.
doi: 10.1007/s11306-007-0070-6
Haug, K. et al. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, D781–D786 (2013).
pubmed: 23109552
doi: 10.1093/nar/gks1004
Salek, R. M., Haug, K. & Steinbeck, C. Dissemination of metabolomics results: role of MetaboLights and COSMOS. GigaScience 2, 8 (2013).
pubmed: 23683662
pmcid: 3658998
doi: 10.1186/2047-217X-2-8
Steinbeck, C. et al. MetaboLights: towards a new COSMOS of metabolomics data management. Metabolomics 8, 757–760 (2012).
pubmed: 23060735
pmcid: 3465651
doi: 10.1007/s11306-012-0462-0
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).
pubmed: 24039616
pmcid: 3772505
doi: 10.1007/s11306-007-0082-2
Sansone, S. A. et al. The Metabolomics Standards Initiative. Nat. Biotechnol. 25, 846–848 (2007). This article highlights two standards and guidelines papers for MS and sample preparation by the Human Proteome Organization Proteomics Standardization Initiative (HUPO-PSI) and the Functional Genomics Experiment (FuGE) and describes how metabolomics standards should align to these.
pubmed: 17687353
doi: 10.1038/nbt0807-846b
Spicer, R. A., Salek, R. & Steinbeck, C. A decade after the Metabolomics Standards Initiative: it’s time for a revision. Sci. Data 4, 3 (2017).
doi: 10.1038/sdata.2017.138
Fernie, A. R. et al. Recommendations for reporting metabolite data. Plant Cell 23, 2477–2482 (2011).
pubmed: 21771932
pmcid: 3226225
doi: 10.1105/tpc.111.086272
Aksenov, A. A. et al. A machine learning workflow enables automatic deconvolution of GC-MS data. Nat. Biotechnol. 39, 169–173 (2021).
pubmed: 33169034
doi: 10.1038/s41587-020-0700-3
Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).
pubmed: 32405051
doi: 10.1038/s41596-020-0317-5
Blaženović, I. et al. Structure annotation of all mass spectra in untargeted metabolomics. Anal. Chem. 91, 2155–2162 (2019).
pubmed: 30608141
doi: 10.1021/acs.analchem.8b04698
Buendia, P. et al. Ontology-based metabolomics data integration with quality control. Bioanalysis 11, 1139–1155 (2019).
pubmed: 31179719
pmcid: 6661928
doi: 10.4155/bio-2018-0303
Hoffmann, N. et al. mzTab-M: a data standard for sharing quantitative results in mass spectrometry metabolomics. Anal. Chem. 91, 3302–3310 (2019).
pubmed: 30688441
pmcid: 6660005
doi: 10.1021/acs.analchem.8b04310
Jarmusch, A. K. et al. ReDU: a framework to find and reanalyze public mass spectrometry data. Nat. Methods 17, 901–904 (2020). This tool enables the capture of public MS-based metabolomics data and their subsequent reanalysis.
pubmed: 32807955
pmcid: 7968862
doi: 10.1038/s41592-020-0916-7
Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).
pubmed: 32839597
pmcid: 7885687
doi: 10.1038/s41592-020-0933-6
Tsugawa, H. et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 16, 295–298 (2019).
pubmed: 30923379
doi: 10.1038/s41592-019-0358-2
Huan, T. et al. Systems biology guided by XCMS Online metabolomics. Nat. Methods 14, 461–462 (2017).
pubmed: 28448069
pmcid: 5933448
doi: 10.1038/nmeth.4260
Patel, V. R., Eckel-Mahan, K., Sassone-Corsi, P. & Baldi, P. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat. Methods 9, 772–773 (2012).
pubmed: 22847108
doi: 10.1038/nmeth.2111
Palladino, G. W., Wood, J. J. & Proctor, H. J. Modified freeze clamp technique for tissue assay. J. Surg. Res. 28, 188–190 (1980).
pubmed: 7359915
doi: 10.1016/0022-4804(80)90161-4
Tohge, T. et al. From models to crop species: caveats and solutions for translational metabolomics. Front. Plant Sci. 2, 61 (2011).
pubmed: 22639601
pmcid: 3355600
doi: 10.3389/fpls.2011.00061
Trutschel, D., Schmidt, S., Grosse, I. & Neumann, S. Experiment design beyond gut feeling: statistical tests and power to detect differential metabolites in mass spectrometry data. Metabolomics 11, 851–860 (2015).
doi: 10.1007/s11306-014-0742-y
Sanchez, D. H., Szymanski, J., Erban, A., Udvardi, M. K. & Kopka, J. Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. Plant Cell Environ. 33, 468–480 (2010).
pubmed: 19781009
doi: 10.1111/j.1365-3040.2009.02047.x
Chen, W. et al. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nat. Commun. 7, 12767 (2016).
pubmed: 27698483
pmcid: 5059443
doi: 10.1038/ncomms12767
Fuhrer, T., Zampieri, M., Sevin, D. C., Sauer, U. & Zamboni, N. Genomewide landscape of gene–metabolome associations in Escherichia coli. Mol. Syst. Biol. 13, 907 (2017).
pubmed: 28093455
pmcid: 5293155
doi: 10.15252/msb.20167150
Hartiala, J. A. et al. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat. Commun. 7, 10558 (2016).
pubmed: 26822151
pmcid: 4740183
doi: 10.1038/ncomms10558
Alseekh, S., Wu, S., Brotman, Y. & Fernie, A. R. Guidelines for sample normalization to minimize batch variation for large-scale metabolic profiling of plant natural genetic variance. Methods Mol. Biol. 1778, 33–46 (2018).
pubmed: 29761429
doi: 10.1007/978-1-4939-7819-9_3
Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).
pubmed: 21720319
doi: 10.1038/nprot.2011.335
Griffin, J. L. et al. Standard reporting requirements for biological samples in metabolomics experiments: mammalian/in vivo experiments. Metabolomics 3, 179–188 (2007).
doi: 10.1007/s11306-007-0077-z
Vandeputte, D., Tito, R. Y., Vanleeuwen, R., Falony, G. & Raes, J. Practical considerations for large-scale gut microbiome studies. FEMS Microbiol. Rev. 41, S154–S167 (2017).
pubmed: 28830090
pmcid: 7207147
doi: 10.1093/femsre/fux027
Wehrens, R. et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics 12, 88 (2016).
pubmed: 27073351
pmcid: 4796354
doi: 10.1007/s11306-016-1015-8
Cui, Q. et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 26, 162–164 (2008).
pubmed: 18259166
doi: 10.1038/nbt0208-162
Nakamura, Y. et al. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 55, e7 (2014).
pubmed: 24285751
doi: 10.1093/pcp/pct176
Tautenhahn, R. et al. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol. 30, 826–828 (2012).
pubmed: 22965049
pmcid: 3666346
doi: 10.1038/nbt.2348
Vinaixa, M. et al. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trac-Trends Anal. Chem. 78, 23–35 (2016).
doi: 10.1016/j.trac.2015.09.005
Zhu, Z. J. et al. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 8, 451–460 (2013).
pubmed: 23391889
pmcid: 3666335
doi: 10.1038/nprot.2013.004
Niebel, B., Leupold, S. & Heinemann, M. An upper limit on Gibbs energy dissipation governs cellular metabolism. Nat. Metab. 1, 125–132 (2019).
pubmed: 32694810
doi: 10.1038/s42255-018-0006-7
Jourdan, F., Breitling, R., Barrett, M. P. & Gilbert, D. MetaNetter: inference and visualization of high-resolution metabolomic networks. Bioinformatics 24, 143–145 (2008).
pubmed: 18003642
doi: 10.1093/bioinformatics/btm536
Pirhaji, L. et al. Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat. Methods 13, 770–776 (2016).
pubmed: 27479327
pmcid: 5209295
doi: 10.1038/nmeth.3940
Shen, X. T. et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat. Commun. 10, 1516 (2019). This represents an important example of a tool using a metabolic reaction network that expands metabolite annotations without the need for a comprehensive standard spectral library.
Kummel, A., Panke, S. & Heinemann, M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2, 2006.0034 (2006).
pubmed: 16788595
pmcid: 1681506
doi: 10.1038/msb4100074
Ap Rees, T. & Hill, S. A. Metabolic control analysis of plant metabolism. Plant Cell Environ. 17, 587–599 (1994).
doi: 10.1111/j.1365-3040.1994.tb00151.x
Arrivault, S. et al. Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J. 59, 826–839 (2009).
pubmed: 19453453
doi: 10.1111/j.1365-313X.2009.03902.x
Lu, W., Bennett, B. D. & Rabinowitz, J. D. Analytical strategies for LC–MS-based targeted metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 871, 236–242 (2008).
doi: 10.1016/j.jchromb.2008.04.031
Lunn, J. E. et al. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem. J. 397, 139–148 (2006).
pubmed: 16551270
pmcid: 1479759
doi: 10.1042/BJ20060083
Annesley, T. M. Ion suppression in mass spectrometry. Clin. Chem. 49, 1041–1044 (2003).
pubmed: 12816898
doi: 10.1373/49.7.1041
Antignac, J. P., Marchand, P., Le Bizec, B. & Andre, F. Identification of ractopamine residues in tissue and urine samples at ultra-trace level using liquid chromatography–positive electrospray tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 774, 59–66 (2002).
doi: 10.1016/S1570-0232(02)00205-2
Kebarle, P. & Tang, L. From ions in solution to ions in the gas phase—the mechanism of electrospray mass spectrometry. Anal. Chem. 65, 972A–986A (1993).
Roessner-Tunali, U. et al. De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels. Plant Physiol. 133, 683–692 (2003).
pubmed: 14512520
pmcid: 219043
doi: 10.1104/pp.103.024802
Buhrman, D. L., Price, P. I. & Rudewiczcor, P. J. Quantitation of SR 27417 in human plasma using electrospray liquid chromatography–tandem mass spectrometry: a study of ion suppression. J. Am. Soc. Mass Spectrom. 7, 1099–1105 (1996).
pubmed: 24203071
doi: 10.1016/S1044-0305(96)00072-4
Gerssen, A. et al. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 394, 1213–1226 (2009).
pubmed: 19387619
doi: 10.1007/s00216-009-2790-0
Freitas, L. G., Götz, C. W., Ruff, M., Singer, H. P. & Müller, S. R. Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1028, 277–286 (2004).
pubmed: 14989481
doi: 10.1016/j.chroma.2003.11.094
De Vijlder, T. et al. A tutorial in small molecule identification via electrospray ionization–mass spectrometry: the practical art of structural elucidation. Mass Spectrom. Rev. 37, 607–629 (2018).
pubmed: 29120505
doi: 10.1002/mas.21551
Dettmer, K., Aronov, P. A. & Hammock, B. D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26, 51–78 (2007).
pubmed: 16921475
pmcid: 1904337
doi: 10.1002/mas.20108
Tohge, T. et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42, 218–235 (2005).
pubmed: 15807784
doi: 10.1111/j.1365-313X.2005.02371.x
Shahaf, N. et al. The WEIZMASS spectral library for high-confidence metabolite identification. Nat. Commun. 7, 12423 (2016). This represents a reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites, providing great promise for addressing the question of comprehensivity in metabolomics.
pubmed: 27571918
pmcid: 5013563
doi: 10.1038/ncomms12423
Feldberg, L., Venger, I., Malitsky, S., Rogachev, I. & Aharoni, A. Dual labeling of metabolites for metabolome analysis (DLEMMA): a new approach for the identification and relative quantification of metabolites by means of dual isotope labeling and liquid chromatography–mass spectrometry. Anal. Chem. 81, 9257–9266 (2009).
pubmed: 19845344
doi: 10.1021/ac901495a
Schiffman, C. et al. Filtering procedures for untargeted LC–MS metabolomics data. BMC Bioinformatics 20, 334 (2019).
pubmed: 31200644
pmcid: 6570933
doi: 10.1186/s12859-019-2871-9
Kale, N. S. et al. MetaboLights: an open-access database repository for metabolomics data. Curr. Protoc. Bioinformatics 53, 14.13.11–14.13.18 (2016).
doi: 10.1002/0471250953.bi1413s53
Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).
pubmed: 26467476
doi: 10.1093/nar/gkv1042
Price, E. J. et al. Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops. Plant J. 101, 1258–1268 (2020). Recent exemplary documentation of a metabolomics experiment that evaluated metabolite levels in crop species, providing not only an extensive database but moreover an excellent example of how to correctly investigate understudied species.
Bino, R. J. et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9, 418–425 (2004).
pubmed: 15337491
doi: 10.1016/j.tplants.2004.07.004
Kirwan, J. A. et al. Preanalytical processing and biobanking procedures of biological samples for metabolomics research: a white paper, community perspective (for ‘Precision Medicine and Pharmacometabolomics Task Group’–The Metabolomics Society Initiative). Clin. Chem. 64, 1158–1182 (2018).
pubmed: 29921725
doi: 10.1373/clinchem.2018.287045