Biological significance of monoallelic and biallelic BIRC3 loss in del(11q) chronic lymphocytic leukemia progression.


Journal

Blood cancer journal
ISSN: 2044-5385
Titre abrégé: Blood Cancer J
Pays: United States
ID NLM: 101568469

Informations de publication

Date de publication:
09 07 2021
Historique:
received: 11 03 2021
accepted: 23 06 2021
revised: 20 06 2021
entrez: 10 7 2021
pubmed: 11 7 2021
medline: 4 2 2022
Statut: epublish

Résumé

BIRC3 is monoallelically deleted in up to 80% of chronic lymphocytic leukemia (CLL) cases harboring del(11q). In addition, truncating mutations in the remaining allele of this gene can lead to BIRC3 biallelic inactivation, which has been shown to be a marker for reduced survival in CLL. Nevertheless, the biological mechanisms by which these lesions could contribute to del(11q) CLL pathogenesis and progression are partially unexplored. We implemented the CRISPR/Cas9-editing system to generate isogenic CLL cell lines harboring del(11q) and/or BIRC3 mutations, modeling monoallelic and biallelic BIRC3 loss. Our results reveal that monoallelic BIRC3 deletion in del(11q) cells promotes non-canonical NF-κB signaling activation via RelB-p52 nuclear translocation, being these effects allelic dose-dependent and therefore further enhanced in del(11q) cells with biallelic BIRC3 loss. Moreover, we demonstrate ex vivo in primary cells that del(11q) cases including BIRC3 within their deleted region show evidence of non-canonical NF-κB activation which correlates with high BCL2 levels and enhanced sensitivity to venetoclax. Furthermore, our results show that BIRC3 mutations in del(11q) cells promote clonal advantage in vitro and accelerate leukemic progression in an in vivo xenograft model. Altogether, this work highlights the biological bases underlying disease progression of del(11q) CLL patients harboring BIRC3 deletion and mutation.

Identifiants

pubmed: 34244476
doi: 10.1038/s41408-021-00520-5
pii: 10.1038/s41408-021-00520-5
pmc: PMC8270906
doi:

Substances chimiques

BIRC3 protein, human EC 2.3.2.27
Baculoviral IAP Repeat-Containing 3 Protein EC 2.3.2.27

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

127

Informations de copyright

© 2021. The Author(s).

Références

Döhner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M, et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood. 1997;89:2516–22.
pubmed: 9116297 doi: 10.1182/blood.V89.7.2516
Stilgenbauer S, Liebisch P, James MR, Schröder M, Schlegelberger B, Fischer K, et al. Molecular cytogenetic delineation of a novel critical genomic region in chromosome bands 11q22.3-923.1 in lymphoproliferative disorders. Proc Natl Acad Sci U S A. 1996;93:11837–41.
pubmed: 8876224 pmcid: 38145 doi: 10.1073/pnas.93.21.11837
Neilson JR, Auer R, White D, Bienz N, Waters JJ, Whittaker JA, et al. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia. 1997;11:1929–32.
pubmed: 9369428 doi: 10.1038/sj.leu.2400819
Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.
pubmed: 11136261 doi: 10.1056/NEJM200012283432602
Hoechstetter MA, Busch R, Eichhorst B, Bühler A, Winkler D, Bahlo J, et al. Prognostic model for newly diagnosed CLL patients in Binet stage A: results of the multicenter, prospective CLL1 trial of the German CLL study group. Leukemia. 2020;34:1038–51.
pubmed: 32042081 doi: 10.1038/s41375-020-0727-y
Gunnarsson R, Mansouri L, Isaksson A, Göransson H, Cahill N, Jansson M, et al. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia. Haematologica. 2011;96:1161–9.
pubmed: 21546498 pmcid: 3148910 doi: 10.3324/haematol.2010.039768
Austen B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol. 2007;25:5448–57.
pubmed: 17968022 doi: 10.1200/JCO.2007.11.2649
Stankovic T, Skowronska A. The role of ATM mutations and 11q deletions in disease progression in chronic lymphocytic leukemia. Leuk Lymphoma. 2014;55:1227–39.
pubmed: 23906020 doi: 10.3109/10428194.2013.829919
Rose-Zerilli MJ, Forster J, Parker H, Parker A, Rodríguez AE, Chaplin T, et al. ATM mutation rather than BIRC3 deletion and/or mutation predicts reduced survival in 11q-deleted chronic lymphocytic leukemia: data from the UK LRF CLL4 trial. Haematologica. 2014;99:736–42.
pubmed: 24584352 pmcid: 3971084 doi: 10.3324/haematol.2013.098574
Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S, et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012;119:2854–62.
pubmed: 22308293 doi: 10.1182/blood-2011-12-395673
Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29:329–36.
pubmed: 24943832 doi: 10.1038/leu.2014.196
Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30.
pubmed: 26466571 pmcid: 4815041 doi: 10.1038/nature15395
Guièze R, Robbe P, Clifford R, de Guibert S, Pereira B, Timbs A, et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood. 2015;126:2110–7.
pubmed: 26316624 doi: 10.1182/blood-2015-05-647578
Blakemore SJ, Clifford R, Parker H, Antoniou P, Stec-Dziedzic E, Larrayoz M, et al. Clinical significance of TP53, BIRC3, ATM and MAPK-ERK genes in chronic lymphocytic leukaemia: data from the randomised UK LRF CLL4 trial. Leukemia. 2020;34:1760–74.
pubmed: 32015491 pmcid: 7326706 doi: 10.1038/s41375-020-0723-2
Raponi S, Del Giudice I, Ilari C, Cafforio L, Messina M, Cappelli LV, et al. Biallelic BIRC3 inactivation in chronic lymphocytic leukaemia patients with 11q deletion identifies a subgroup with very aggressive disease. Br J Haematol. 2018;185:156–9.
pubmed: 29785734 doi: 10.1111/bjh.15405
Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526:519–24.
pubmed: 26200345 doi: 10.1038/nature14666
Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127:2122–30.
pubmed: 26837699 pmcid: 4912011 doi: 10.1182/blood-2015-07-659144
Diop F, Moia R, Favini C, Spaccarotella E, De Paoli L, Bruscaggin A, et al. Biological and clinical implications of BIRC3 mutations in chronic lymphocytic leukemia. Haematologica. 2020;105:448–56.
pubmed: 31371416 pmcid: 7012473 doi: 10.3324/haematol.2019.219550
Tausch E, Beck P, Schlenk RF, Jebaraj BJ, Dolnik A, Yosifov DY, et al. Prognostic and predictive role of gene mutations in chronic lymphocytic leukemia: Results complement1 from the pivotal phase III study. Haematologica. 2020;105:2440–7.
pubmed: 33054084 pmcid: 7556677 doi: 10.3324/haematol.2019.229161
Brieghel C, da Cunha-Bang C, Yde CW, Schmidt AY, Kinalis S, Nadeu F, et al. The number of signaling pathways altered by driver mutations in chronic lymphocytic leukemia impacts disease outcome. Clin Cancer Res. 2020;26:1507–15.
pubmed: 31919133 doi: 10.1158/1078-0432.CCR-18-4158
Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol. 2008;9:1371–8.
pubmed: 18997794 pmcid: 2676931 doi: 10.1038/ni.1676
Mansouri L, Papakonstantinou N, Ntoufa S, Stamatopoulos K, Rosenquist R. NF-κB activation in chronic lymphocytic leukemia: A point of convergence of external triggers and intrinsic lesions. Semin Cancer Biol. 2016;39:40–8.
pubmed: 27491692 doi: 10.1016/j.semcancer.2016.07.005
Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17:545–58.
pubmed: 28580957 pmcid: 5753586 doi: 10.1038/nri.2017.52
Yin S, Gambe RG, Sun J, Martinez AZ, Cartun ZJ, Regis F, et al. A murine model of chronic lymphocytic leukemia based on B cell-restricted expression of Sf3b1 mutation and atm deletion. Cancer Cell. 2019;35:283. e5
pubmed: 30712845 pmcid: 6372356 doi: 10.1016/j.ccell.2018.12.013
Arruga F, Gizdic B, Bologna C, Cignetto S, Buonincontri R, Serra S, et al. Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia. 2017;31:1882–93.
pubmed: 28017968 doi: 10.1038/leu.2016.383
Close V, Close W, Kugler SJ, Reichenzeller M, Yosifov DY, Bloehdorn J, et al. FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood. 2019;133:830–9.
pubmed: 30510140 doi: 10.1182/blood-2018-09-874529
Quijada-Álamo M, Hernández-Sánchez M, Alonso-Pérez V, Rodríguez-Vicente AE, García-Tuñón I, Martín-Izquierdo M, et al. CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition. Leukemia. 2020;34:1599–612.
pubmed: 31974435 pmcid: 7266745 doi: 10.1038/s41375-020-0714-3
Quijada-Álamo M, Pérez-Carretero C, Hernández-Sánchez M, Rodríguez-Vicente AE, Herrero AB, Hernández-Sánchez JM, et al. Dissecting the role of TP53 alterations in del(11q) chronic lymphocytic leukemia. Clin Transl. Med. 2021;11:304.
doi: 10.1002/ctm2.304
Hernández-Sánchez M, Rodríguez-Vicente AE, González-Gascón Y Marín I, Quijada-Álamo M, Hernández-Sánchez JM, Martín-Izquierdo M, et al. DNA damage response-related alterations define the genetic background of patients with chronic lymphocytic leukemia and chromosomal gains. Exp Hematol. 2019;72:9–13.
pubmed: 30807786 doi: 10.1016/j.exphem.2019.02.003
Purroy N, Abrisqueta P, Carabia J, Carpio C, Calpe E, Palacio C, et al. Targeting the proliferative and chemoresistant compartment in chronic lymphocytic leukemia by inhibiting survivin protein. Leukemia. 2014;28:1993–2004.
pubmed: 24618734 doi: 10.1038/leu.2014.96
Asslaber D, Wacht N, Leisch M, Qi Y, Maeding N, Hufnagl C, et al. BIRC3 expression predicts CLL progression and defines treatment sensitivity via enhanced NF-kB nuclear translocation. Clin Cancer Res. 2019;25:1901–12.
pubmed: 30487125 doi: 10.1158/1078-0432.CCR-18-1548
Viatour P, Bentires-Alj M, Chariot A, Deregowski V, de Leval L, Merville MP, et al. NF-κB2/p100 induces Bcl-2 expression. Leukemia. 2003;17:1349–56.
pubmed: 12835724 doi: 10.1038/sj.leu.2402982
Tromp JM, Tonino SH, Elias JA, Jaspers A, Luijks DM, Kater AP, et al. Dichotomy in NF-B signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering. Oncogene. 2010;29:5071–82.
pubmed: 20581863 doi: 10.1038/onc.2010.248
Brightbill HD, Suto E, Blaquiere N, Ramamoorthi N, Sujatha-Bhaskar S, Gogol EB, et al. NF-κB inducing kinase is a therapeutic target for systemic lupus erythematosus. Nat Commun. 2018;9:1–14.
doi: 10.1038/s41467-017-02672-0
Van Dyke DL, Werner L, Rassenti LZ, Neuberg D, Ghia E, Heerema NA, et al. The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience. Br J Haematol. 2016;173:105–13.
pubmed: 26848054 pmcid: 4963001 doi: 10.1111/bjh.13933
Hernández JÁ, Hernández-Sánchez M, Rodríguez-Vicente AE, Grossmann V, Collado R, Heras C, et al. A low frequency of losses in 11q chromosome is associated with better outcome and lower rate of genomic mutations in patients with chronic lymphocytic leukemia. PLoS ONE. 2015;10:e0143073.
Gardam S, Turner VM, Anderton H, Limaye S, Basten A, Koentgen F, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood. 2011;117:4041–51.
pubmed: 21300983 doi: 10.1182/blood-2010-10-312793
Chen TL, Tran M, Lakshmanan A, Harrington BK, Gupta N, Goettl VM, et al. NF-kB p50 (nfkb1) contributes to pathogenesis in the Eμ-TCL1 mouse model of chronic lymphocytic leukemia. Blood. 2017;130:376–9.
pubmed: 28515090 pmcid: 5520469 doi: 10.1182/blood-2017-01-761130
Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci. 2014;71:2083–102.
pubmed: 24419302 doi: 10.1007/s00018-013-1545-4
Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D'Rozario J, Assouline S, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018;378:1107–20.
pubmed: 29562156 doi: 10.1056/NEJMoa1713976
Kater AP, Seymour JF, Hillmen P, Eichhorst B, Langerak AW, Owen C, et al. Fixed duration of venetoclax-rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival: Post-treatment follow-up of the Murano phase III study. J Clin Oncol. 2019;37:269–77.
pubmed: 30523712 doi: 10.1200/JCO.18.01580
Guièze R, Liu VM, Rosebrock D, Jourdain AA, Hernández-Sánchez M, Martinez Zurita A, et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell. 2019;36:369. e13.
pubmed: 31543463 pmcid: 6801112 doi: 10.1016/j.ccell.2019.08.005
Tausch E, Schneider C, Robrecht S, Zhang C, Dolnik A, Bloehdorn J, et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood. 2020;135:2402–12.
pubmed: 32206772 doi: 10.1182/blood.2019004492
Haselager M, Thijssen R, West C, Young L, Van Kampen R, Willmore E, et al. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ. 2021;28:1658–68.
pubmed: 33495554 pmcid: 8167103 doi: 10.1038/s41418-020-00692-w
Rahal R, Frick M, Romero R, Korn JM, Kridel R, Chan FC, et al. Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma. Nat Med. 2014;20:87–92.
pubmed: 24362935 doi: 10.1038/nm.3435

Auteurs

Miguel Quijada-Álamo (M)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

María Hernández-Sánchez (M)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Ana-Eugenia Rodríguez-Vicente (AE)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Claudia Pérez-Carretero (C)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Alberto Rodríguez-Sánchez (A)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Marta Martín-Izquierdo (M)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Verónica Alonso-Pérez (V)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Ignacio García-Tuñón (I)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

José María Bastida (JM)

Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

María Jesús Vidal-Manceñido (MJ)

Department of Hematology, Hospital Virgen Blanca, León, Spain.

Josefina Galende (J)

Department of Hematology, Hospital del Bierzo, Ponferrada, Spain.

Carlos Aguilar (C)

Department of Hematology, Hospital Santa Bárbara, Soria, Spain.

José Antonio Queizán (JA)

Department of Hematology, Hospital General de Segovia, Segovia, Spain.

Isabel González-Gascón Y Marín (I)

Department of Hematology, Hospital Universitario Infanta Leonor. Universidad Complutense, Madrid, Spain.

José-Ángel Hernández-Rivas (JÁ)

Department of Hematology, Hospital Universitario Infanta Leonor. Universidad Complutense, Madrid, Spain.

Rocío Benito (R)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

José Luis Ordóñez (JL)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Jesús-María Hernández-Rivas (JM)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain. jmhr@usal.es.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain. jmhr@usal.es.
Department of Medicine, University of Salamanca, Salamanca, Spain. jmhr@usal.es.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH