Evaluating Indoor Air Chemical Diversity, Indoor-to-Outdoor Emissions, and Surface Reservoirs Using High-Resolution Mass Spectrometry.

aerosols atmospheric chemistry emissions of volatile chemical products indoor air quality personal care products surface emissions ventilation volatile organic compounds whole-house emission rates

Journal

Environmental science & technology
ISSN: 1520-5851
Titre abrégé: Environ Sci Technol
Pays: United States
ID NLM: 0213155

Informations de publication

Date de publication:
03 08 2021
Historique:
pubmed: 17 7 2021
medline: 7 9 2021
entrez: 16 7 2021
Statut: ppublish

Résumé

Detailed offline speciation of gas- and particle-phase organic compounds was conducted using gas/liquid chromatography with traditional and high-resolution mass spectrometers in a hybrid targeted/nontargeted analysis. Observations were focused on an unoccupied home and were compared to two other indoor sites. Observed gas-phase organic compounds span the volatile to semivolatile range, while functionalized organic aerosols extend from intermediate volatility to ultra-low volatility, including a mix of oxygen, nitrogen, and sulfur-containing species. Total gas-phase abundances of hydrocarbon and oxygenated gas-phase complex mixtures were elevated indoors and strongly correlated in the unoccupied home. While gas-phase concentrations of individual compounds generally decreased slightly with greater ventilation, their elevated ratios relative to controlled emissions of tracer species suggest that the dilution of gas-phase concentrations increases off-gassing from surfaces and other indoor reservoirs, with volatility-dependent responses to dynamically changing environmental factors. Indoor-outdoor emissions of gas-phase intermediate-volatility/semivolatile organic hydrocarbons from the unoccupied home averaged 6-11 mg h

Identifiants

pubmed: 34270218
doi: 10.1021/acs.est.1c01337
pmc: PMC8461992
mid: NIHMS1735093
doi:

Substances chimiques

Aerosols 0
Air Pollutants 0
Volatile Organic Compounds 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

10255-10267

Subventions

Organisme : EPA
ID : R835751
Pays : United States

Références

Indoor Air. 2019 Sep;29(5):761-779
pubmed: 31264732
Indoor Air. 2000 Sep;10(3):178-92
pubmed: 10979199
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13294-9
pubmed: 23898188
Chem Rev. 2010 Apr 14;110(4):2536-72
pubmed: 20067232
Environ Sci Technol. 2021 Jan 5;55(1):188-199
pubmed: 33325693
Environ Sci Technol. 2014 Jan 21;48(2):1230-7
pubmed: 24328315
Environ Health Perspect. 2016 Jun;124(6):805-12
pubmed: 26502459
Indoor Air. 2006 Jun;16(3):179-91
pubmed: 16683937
Environ Sci Technol. 2020 Jan 21;54(2):714-725
pubmed: 31851821
Indoor Air. 2016 Feb;26(1):25-38
pubmed: 25471461
Environ Sci Technol. 2001 Sep 15;35(18):3626-39
pubmed: 11783638
Sci Adv. 2018 May 09;4(5):eaap8368
pubmed: 29750194
Environ Sci Technol. 2021 Apr 20;55(8):4332-4343
pubmed: 33720711
Indoor Air. 2019 Nov;29(6):913-925
pubmed: 31420890
Sci Adv. 2020 Mar 04;6(10):eaay4109
pubmed: 32181345
Indoor Air. 2020 Jul;30(4):745-756
pubmed: 32077147
Indoor Air. 2007 Apr;17(2):153-63
pubmed: 17391238
Indoor Air. 2019 Nov;29(6):926-942
pubmed: 31449696
J Expo Anal Environ Epidemiol. 2001 May-Jun;11(3):231-52
pubmed: 11477521
Air Waste. 1993 Mar;43(3):316-24
pubmed: 8457318
JAPCA. 1989 Oct;39(10):1344-7
pubmed: 2685175
Environ Sci Technol. 2008 May 15;42(10):3494-9
pubmed: 18546679
Science. 2018 Feb 16;359(6377):760-764
pubmed: 29449485
J Chromatogr A. 2018 Nov 9;1575:80-90
pubmed: 30292521
Environ Sci Technol. 2015 Oct 6;49(19):11485-91
pubmed: 26339802
Sci Adv. 2020 Feb 19;6(8):eaay8973
pubmed: 32128415
Environ Int. 2017 Dec;109:81-88
pubmed: 28950160
J Chromatogr A. 2019 Aug 2;1598:163-174
pubmed: 30928166
J Expo Anal Environ Epidemiol. 2005 Mar;15(2):123-37
pubmed: 15213705
Environ Sci Technol. 2006 Jul 15;40(14):4421-8
pubmed: 16903280
Environ Sci Technol. 2019 May 7;53(9):4794-4802
pubmed: 30990681
Environ Sci Technol. 2003 Oct 15;37(20):4543-53
pubmed: 14594359
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18318-23
pubmed: 23091031
Phys Chem Chem Phys. 2011 Nov 21;13(43):19238-55
pubmed: 21993380
Environ Sci Technol. 2016 Apr 5;50(7):3572-9
pubmed: 26963686
Indoor Air. 2018 May 30;:
pubmed: 29846963
Indoor Air. 2019 Jul;29(4):630-644
pubmed: 31004537
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6568-75
pubmed: 19706436
Science. 2009 Dec 11;326(5959):1525-9
pubmed: 20007897
Atmos Chem Phys. 2021 Mar 31;21(6):5079-5100
pubmed: 34122530
Indoor Air. 2021 Jul;31(4):1199-1216
pubmed: 33484190
Environ Sci Process Impacts. 2020 Jan 1;22(1):25-48
pubmed: 31712796
Science. 2007 Mar 2;315(5816):1259-62
pubmed: 17332409
Indoor Air. 2017 Nov;27(6):1101-1112
pubmed: 28556424
J Expo Anal Environ Epidemiol. 2004;14 Suppl 1:S71-7
pubmed: 15118748
Indoor Air. 2019 Jan;29(1):17-29
pubmed: 30387208
Indoor Air. 2019 Jul;29(4):645-655
pubmed: 31004533
Environ Sci Technol. 2019 Nov 19;53(22):13053-13063
pubmed: 31652057
Int J Environ Res Public Health. 2010 Dec;7(12):4213-37
pubmed: 21318004
Environ Sci Technol. 2019 Nov 19;53(22):13009-13018
pubmed: 31525033
Indoor Air. 2011 Apr;21(2):92-109
pubmed: 21392118
Environ Sci Technol. 2020 Feb 18;54(4):2143-2151
pubmed: 31898894
Nat Chem. 2018 Apr;10(4):462-468
pubmed: 29483638
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1186-1191
pubmed: 29358383
Indoor Air. 2011 Jun;21(3):191-204
pubmed: 21204989
Environ Sci Technol. 2006 Apr 15;40(8):2635-43
pubmed: 16683603
Indoor Air. 2020 Mar;30(2):326-334
pubmed: 31845419
Environ Sci Process Impacts. 2019 Mar 20;21(3):528-547
pubmed: 30698188
Environ Sci Technol. 2019 Feb 19;53(4):1812-1821
pubmed: 30633495

Auteurs

Roger Sheu (R)

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.

Claire F Fortenberry (CF)

Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Michael J Walker (MJ)

Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Azin Eftekhari (A)

Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27515, United States.

Christof Stönner (C)

Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany.

Alexa Bakker (A)

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.

Jordan Peccia (J)

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.

Jonathan Williams (J)

Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany.

Glenn C Morrison (GC)

Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27515, United States.

Brent J Williams (BJ)

Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Drew R Gentner (DR)

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.

Articles similaires

Aerosols Humans Decontamination Air Microbiology Masks
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH