Knockdown of lncRNA LUCAT1 attenuates sepsis‑induced myocardial cell injury by sponging miR-642a.
Journal
Mammalian genome : official journal of the International Mammalian Genome Society
ISSN: 1432-1777
Titre abrégé: Mamm Genome
Pays: United States
ID NLM: 9100916
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
31
05
2021
accepted:
30
06
2021
pubmed:
18
7
2021
medline:
17
3
2022
entrez:
17
7
2021
Statut:
ppublish
Résumé
The heart is one of the most common organs involved in sepsis-induced organ dysfunction and about 50% septic patients complicated with myocardial injury. So far, the molecular mechanisms underlying sepsis-induced cardiac damage remain unclear. In this study we aimed to evaluate the effect of miR-642a on sepsis-induced cardiac injury in vitro and explore the possible lncRNA-microRNA mechanism. We first downloaded GSE101639 to identify differentially expressed genes (DEGs) in sepsis. The expression of miR-642a in LPS-induced H9C2 cells was detected by qRT-PCR. MTT assay, cell migration, flow cytometry analysis, ELISA, qRT-PCR and Western blotting analysis were applied to evaluating the effect of miR-642a mimic on LPS-induced H9C2 cells. The bioinformatics analysis and the rescue experiment were devoted to the underlying mechanism. The results showed miR-642a expression was decreased in septic patients and LPS-induced H9C2 cells. Besides, MiR-642a mimic promoted cell viability and migration, inhibited cell apoptosis of LPS-induced H9C2 cells. Bioinformatics analysis showed miR-642a directly targets with 3'-UTR of ROCK1. Moreover, LUCAT1 regulated ROCK1 expression act as a competing endogenous RNA (ceRNA) for miR-642a. Our data demonstrated that lncRNA LUCAT1 could function via sponging miR-642a to regulate ROCK1 expression in LPS-induced H9C2 cells. And knockdown of lncRNA LUCAT1 could suppress LPS-induced cardiac injury in vitro.
Identifiants
pubmed: 34272987
doi: 10.1007/s00335-021-09890-4
pii: 10.1007/s00335-021-09890-4
doi:
Substances chimiques
Lipopolysaccharides
0
MIRN642 microRNA, human
0
MicroRNAs
0
RNA, Long Noncoding
0
long non-coding RNA LUCAT1, human
0
ROCK1 protein, human
EC 2.7.11.1
rho-Associated Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
457-465Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Chen T, Zhu C, Ye C (2020) LncRNA CYTOR attenuates sepsis-induced myocardial injury via regulating miR-24/XIAP. Cell Biochem Funct 38:976–985
doi: 10.1002/cbf.3524
Chousterman BG, Swirski FK, Weber GF (2017) Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 39:517–528
doi: 10.1007/s00281-017-0639-8
Feng H, Chen J, Wang H, Cheng Y, Zou Z, Zhong Q, Xu J (2017) Roflumilast reverses polymicrobial sepsis-induced liver damage by inhibiting inflammation in mice. Lab Invest 97:1008–1019
doi: 10.1038/labinvest.2017.59
Frencken JF, Donker DW, Spitoni C, Koster-Brouwer ME, Soliman IW, Ong DSY, Horn J, van der Poll T, van Klei WA, Bonten MJM, Cremer OL (2018) Myocardial injury in patients with sepsis and its association with long-term outcome. Circ Cardiovasc Qual Outcomes 11:e004040
doi: 10.1161/CIRCOUTCOMES.117.004040
Gong J, Guan L, Tian P, Li C, Zhang Y (2018) Rho kinase type 1 (ROCK1) promotes lipopolysaccharide-induced inflammation in corneal epithelial cells by activating toll-like receptor 4 (TLR4)-mediated signaling. Med Sci Monit 24:3514–3523
doi: 10.12659/MSM.907277
Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 15:1885–1893
doi: 10.1002/j.1460-2075.1996.tb00539.x
Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T (2016) Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care 4:22
doi: 10.1186/s40560-016-0148-1
Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610
doi: 10.1038/nrg2843
Liu A, Wang W, Fang H, Yang Y, Jiang X, Liu S, Hu J, Hu Q, Dahmen U, Dirsch O (2015) Baicalein protects against polymicrobial sepsis-induced liver injury via inhibition of inflammation and apoptosis in mice. Eur J Pharmacol 748:45–53
doi: 10.1016/j.ejphar.2014.12.014
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408
doi: 10.1006/meth.2001.1262
Makic MBF, Bridges E (2018) CE: Managing sepsis and septic shock: current guidelines and definitions. Am J Nurs 118:34–39
doi: 10.1097/01.NAJ.0000530223.33211.f5
Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159
doi: 10.1038/nrg2521
Monterde-Cruz L, Ramirez-Salazar EG, Rico-Martinez G, Linares-Gonzalez LM, Guzman-Gonzalez R, Delgado-Cedillo E, Estrada-Villasenor E, Valdes-Flores M, Velazquez-Cruz R, Hidalgo-Bravo A (2018) Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population. Hum Cell 31:292–299
doi: 10.1007/s13577-018-0214-1
Ouyang H, Tan Y, Li Q, Xia F, Xiao X, Zheng S, Lu J, Zhong J, Hu Y (2020) MicroRNA-208-5p regulates myocardial injury of sepsis mice via targeting SOCS2-mediated NF-kappaB/HIF-1alpha pathway. Int Immunopharmacol 81:106204
doi: 10.1016/j.intimp.2020.106204
Perner A, Cecconi M, Cronhjort M, Darmon M, Jakob SM, Pettila V, van der Horst ICC (2018) Expert statement for the management of hypovolemia in sepsis. Intensive Care Med 44:791–798
doi: 10.1007/s00134-018-5177-x
Rigoutsos I, Furnari F (2010) Gene-expression forum: decoy for microRNAs. Nature 465:1016–1017
doi: 10.1038/4651016a
Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608
doi: 10.1097/01.CCM.0000266683.64081.02
Sergi C, Shen F, Lim DW, Liu W, Zhang M, Chiu B, Anand V, Sun Z (2017) Cardiovascular dysfunction in sepsis at the dawn of emerging mediators. Biomed Pharmacother 95:153–160
doi: 10.1016/j.biopha.2017.08.066
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810
doi: 10.1001/jama.2016.0287
Sun F, Yuan W, Wu H, Chen G, Sun Y, Yuan L, Zhang W, Lei M (2020) LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192-5p/XIAP axis. Exp Biol Med (Maywood) 245:620–630
doi: 10.1177/1535370220908041
Thai P, Statt S, Chen CH, Liang E, Campbell C, Wu R (2013) Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol 49:204–211
doi: 10.1165/rcmb.2013-0159RC
Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914
doi: 10.1016/j.molcel.2011.08.018
Wang X, Yu Y (2018) MiR-146b protect against sepsis induced mice myocardial injury through inhibition of Notch1. J Mol Histol 49:411–417
doi: 10.1007/s10735-018-9781-4
Wang X, Song Z, Hu B, Chen Z, Chen F, Cao C (2021) MicroRNA642a5p inhibits colon cancer cell migration and invasion by targeting collagen type I alpha1. Oncol Rep 45:933–944
doi: 10.3892/or.2020.7905
Yin Y, Yang ZF, Li XH, Zhou LQ, Zhang YJ, Yang B (2019) Knockdown of long non-coding RNA LUCAT1 reverses high glucose-induced cardiomyocyte injury via targeting CYP11B2. Eur Rev Med Pharmacol Sci 23:8560–8565
pubmed: 31646588
Yu Z, Du Y, Li H, Huang J, Jiang D, Fan J, Shen Y, Zhang L, Yu X, Xu N, Ke Q (2020) miR-642 serves as a tumor suppressor in hepatocellular carcinoma by regulating SEMA4C and p38 MAPK signaling pathway. Oncol Lett 20:74
pubmed: 32863907
pmcid: 7436928
Zhai Y, Ding N (2018) MicroRNA-194 participates in endotoxemia induced myocardial injury via promoting apoptosis. Eur Rev Med Pharmacol Sci 22:2077–2083
pubmed: 29687865
Zhang J, Xiang J, Liu T, Wang X, Tang Y, Liang Y (2020) miR-495 targets ROCK1 to inhibit lipopolysaccharides-induced WI-38 cells apoptosis and inflammation. Kaohsiung J Med Sci 36:607–614
doi: 10.1002/kjm2.12210