Condition-dependent structural collapse in the intrinsically disordered N-terminal domain of prion protein.


Journal

IUBMB life
ISSN: 1521-6551
Titre abrégé: IUBMB Life
Pays: England
ID NLM: 100888706

Informations de publication

Date de publication:
08 2022
Historique:
revised: 25 06 2021
received: 18 05 2021
accepted: 27 06 2021
pubmed: 22 7 2021
medline: 23 7 2022
entrez: 21 7 2021
Statut: ppublish

Résumé

Prion protein is composed of a structure-unsolved N-terminal domain and a globular C-terminal domain. Under limited trypsin digestion, mouse recombinant prion protein can be cleaved into two parts at residue Lys105. Here, we termed these two fragments as the N-domain (sequence 23-105) and the C-domain (sequence 106-230). In this study, the structural properties of the N-domain, the C-domain, and the full-length protein were explored using small-angle X-ray scattering, analytical ultracentrifugation, circular dichroism spectroscopy, and the 8-anilino-1-naphthalenesulfonic acid binding assay. The conformation and size of the prion protein were found to change sensitively under the solvent conditions. The positive residues in the sequence 23-99 of the N-domain were found to be responsible for the enhanced flexibility with the salt concentration reduced below 5 mM. The C-domain containing a hydrophobic patch tends to unfold and aggregate during a salt-induced structural collapse. The N-domain collapsed together with the C-domain at pH 5.2, whereas it collapsed independently at pH 4.2. The positively charged cluster (sequence 100-105) in the N-domain contributed to protecting the exposed hydrophobic surface of the C-domain.

Identifiants

pubmed: 34288372
doi: 10.1002/iub.2528
doi:

Substances chimiques

Intrinsically Disordered Proteins 0
Prion Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

780-793

Subventions

Organisme : Academia Sinica

Informations de copyright

© 2021 International Union of Biochemistry and Molecular Biology.

Références

Prusiner SB, Bolton DC, Groth DF, Bowman KA, Cochran SP, McKinley MP. Further purification and characterization of scrapie prions. Biochemistry. 1982;21:6942-6950.
Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136-144.
Riek R, Hornemann S, Wider G, Glockshuber R, Wuthrich K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 1997;413:282-288.
Lu X, Wintrode PL, Surewicz WK. B-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A. 2007;104:1510-1515.
Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK. Molecular architecture of human prion protein amyloid: A parallel, in-register b-structure. Proc Natl Acad Sci U S A. 2007;104:18946-18951.
Smirnovas V, Kim JI, Lu X, Atarashi R, Caughey B, Surewicz WK. Distinct structures of scrapie prion protein (PrPSc)-seeded versus spontaneous recombinant prion protein fibrils revealed by hydrogen/deuterium exchange. J Biol Chem. 2009;284:24233-24241.
Wille H, Bian W, McDonald M, et al. Natural and synthetic prion structure from X-ray fiber diffraction. Proc Natl Acad Sci. 2009;106:16990-16995.
Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV. The alpha-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel beta-sheet structure in PrP fibrils: Evidence from solid state nuclear magnetic resonance. Biochemistry. 2010;49:9488-9497.
Smirnovas V, Baron GS, Offerdahl DK, Raymond GJ, Caughey B, Surewicz WK. Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. Nat Struct Mol Biol. 2011;18:504-506.
Singh J, Udgaonkar JB. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry. J Mol Biol. 2013;425:3510-3521.
Wang L-Q, Zhao K, Yuan H-Y, et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat Struct Mol Biol. 2020;27:598-602.
Kraus A, Hoyt F, Schwartz CL, Hansen B, Hughson AG, et al. Structure of an infectious mammalian prion. bioRxiv. 2021. https://doi.org/10.1101/2021.02.14.431014.
Lauren J. Cellular prion protein as a therapeutic target in Alzheimer's disease. J Alzheimers Dis. 2014;38:227-244.
Purro SA, Nicoll AJ, Collinge J. Prion protein as a toxic acceptor of amyloid-beta oligomers. Biol Psychiatry. 2018;83:358-368.
Dohler F, Sepulveda-Falla D, Krasemann S, et al. High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer's disease. Brain. 2014;137:873-886.
Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature. 2009;457:1128-1132.
Chen S, Yadav SP, Surewicz WK. Interaction between human prion protein and amyloid-beta (Abeta) oligomers: Role of N-terminal residues. J Biol Chem. 2010;285:26377-26383.
Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, et al. Mice devoid of PrP are resistant to scrapie. Cell. 1993;73:1339-1347.
Fischer M, Rülicke T, Raeber A, et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 1996;15:1255-1264.
Flechsig E, Shmerling D, Hegyi I, et al. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron. 2000;27:399-408.
Das NR, Miyata H, Hara H, et al. The N-terminal polybasic region of prion protein is crucial in prion pathogenesis independently of the octapeptide repeat region. Mol Neurobiol. 2020;57:1203-1216.
Lawson VA, Priola SA, Wehrly K, Chesebro B. N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. J Biol Chem. 2001;276:35265-35271.
Shmerling D, Hegyi I, Fischer M, et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell. 1998;93:203-214.
Baumann F, Tolnay M, Brabeck C, et al. Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J. 2007;26:538-547.
Li A, Christensen HM, Stewart LR, Roth KA, Chiesa R, Harris DA. Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105-125. EMBO J. 2007;26:548-558.
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev. 2008;88:673-728.
Christensen HM, Dikranian K, Li A, et al. A highly toxic cellular prion protein induces a novel, nonapoptotic form of neuronal death. Am J Pathol. 2010;176:2695-2706.
Li A, Barmada SJ, Roth KA, Harris DA. N-terminally deleted forms of the prion protein activate both Bax-dependent and Bax-independent neurotoxic pathways. J Neurosci. 2007;27:852-859.
Liao Y-D, Jeng J-C, Wang C-F, Wang S-C, Chang S-T. Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Prot Sci. 2004;13:1802-1810.
Dalbøge H, Bayne S, Pedersen J. In vivo processing of N-terminal methionine in E. coli. FEBS Lett. 1990;266:1-3.
Laue T, Shah B, Ridgeway T, Pelletier S. In: Harding SE, Horton HC, Rowe AJ, editors. Analytical ultracentrifugation in biochemistry & polymer science. London: Royal Society of Chemistry, 1992; p. 90-125.
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78:1606-1619.
Yeh Y-Q, Liao K-F, Shih O, et al. Probing the acid-induced packing structure changes of the molten globule domains of a protein near equilibrium unfolding. J Phys Chem Lett. 2017;8:470-477.
Shih O, Yeh Y-Q, Liao K-F, et al. Membrane charging and swelling upon calcium adsorption as revealed by phospholipid nanodiscs. J Phys Chem Lett. 2018;9:4287-4293.
Rodriguez J, Gupta N, Smith RD, Pevzner PA. Does trypsin cut before proline? J Proteome Res. 2008;7:300-305.
Tria G, Mertens HD, Kachala M, Svergun DI. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ. 2015;2:207-217.
Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI. Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc. 2007;129:5656-5664.
Carter L, Kim SJ, Schneidman-Duhovny D, et al. Prion protein-antibody complexes characterized by chromatography-coupled small-angle X-ray scattering. Biophys J. 2015;109:793-805.
Legname G. Elucidating the function of the prion protein. PLoS Pathog. 2017;13:e1006458.
Ambadi Thody S, Mathew MK, Udgaonkar JB. Mechanism of aggregation and membrane interactions of mammalian prion protein. Biochim Biophys Acta Biomembr. 2018;1860:1927-1935.
Moulick R, Udgaonkar JB. Thermodynamic characterization of the unfolding of the prion protein. Biophys J. 2014;106:410-420.
Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004;10(Suppl):S10-S17.
Hall D, Hirota N, Dobson CM. A toy model for predicting the rate of amyloid formation from unfolded protein. J Mol Biol. 2005;351:195-205.
Hall D, Hirota N. Multi-scale modelling of amyloid formation from unfolded proteins using a set of theory derived rate constants. Biophys Chem. 2009;140:122-128.
Abeln S, Frenkel D. Accounting for protein-solvent contacts facilitates design of nonaggregating lattice proteins. Biophys J. 2011;100:693-700.
Santos J, Iglesias V, Santos-Suárez J, et al. pH-dependent aggregation in intrinsically disordered proteins is determined by charge and lipophilicity. Cell. 2020;9:145.
Abeln S, Frenkel D. Disordered flanks prevent peptide aggregation. PLoS Comput Biol. 2008;4:e1000241.
Ikeda K, Suzuki S, Shigemitsu Y, et al. Presence of intrinsically disordered proteins can inhibit the nucleation phase of amyloid fibril formation of Aβ(1-42) in amino acid sequence independent manner. Sci Rep. 2020;10:12334.
McDonald AJ, Leon DR, Markham KA, Wu B, Heckendorf CF, et al. Altered domain structure of the prion protein caused by cu(2+) binding and functionally relevant mutations: analysis by cross-linking, MS/MS, and NMR. Structure. 2019;27:907-922.e905.
Mastrianni JA. The genetics of prion diseases. Genet Med. 2010;12:187-195.
Jeong B-H, Kim Y-S. Genetic studies in human prion diseases. J Korean Med Sci. 2014;29:623-632.
Lloyd SE, Mead S, Collinge J. Genetics of prion diseases. Curr Opin Genet Dev. 2013;23:345-351.
Chabry J, Caughey B, Chesebro B. Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem. 1998;273:13203-13207.
Chabry J, Priola SA, Wehrly K, Nishio J, Hope J, et al. Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence. J Virol. 1999;73:6245-6250.
Nazabal A, Hornemann S, Aguzzi A, Zenobi R. Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils. J Mass Spectrom. 2009;44:965-977.
Groveman BR, Dolan MA, Taubner LM, Kraus A, Wickner RB, Caughey B. Parallel in-register intermolecular β-sheet architectures for prion-seeded prion protein (PrP) amyloids. J Biol Chem. 2014;289:24129-24142.
Ettaiche M, Pichot R, Vincent JP, Chabry J. In vivo cytotoxicity of the prion protein fragment 106-126. J Biol Chem. 2000;275:36487-36490.
Chabry J, Ratsimanohatra C, Sponne I, Elena P-P, Vincent J-P, Pillot T. In vivo and in vitro neurotoxicity of the human prion protein (PrP) fragment P118-135 independently of PrP expression. J Neurosci. 2003;23:462-469.
Haïk S, Peyrin JM, Lins L, Rosseneu MY, Brasseur R, et al. Neurotoxicity of the putative transmembrane domain of the prion protein. Neurobiol Dis. 2000;7:644-656.
Morillas M, Swietnicki W, Gambetti P, Surewicz WK. Membrane environment alters the conformational structure of the recombinant human prion protein. J Biol Chem. 1999;274:36859-36865.
Bera A, Nandi PK. Nucleic acid induced unfolding of recombinant prion protein globular fragment is pH dependent. Protein Sci. 2014;23:1780-1788.

Auteurs

Eric H-L Chen (EH)

Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.

Kuei-Ming Lin (KM)

Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.

Jason C Sang (JC)

Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.

Meng-Ru Ho (MR)

Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.

Chih-Hsuan Lee (CH)

Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.

Orion Shih (O)

National Synchrotron Radiation Research Center, Hsinchu, Taiwan.

Chun-Jen Su (CJ)

National Synchrotron Radiation Research Center, Hsinchu, Taiwan.

Yi-Qi Yeh (YQ)

National Synchrotron Radiation Research Center, Hsinchu, Taiwan.

U-Ser Jeng (US)

National Synchrotron Radiation Research Center, Hsinchu, Taiwan.
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.

Rita P-Y Chen (RP)

Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH