Quick Annotator: an open-source digital pathology based rapid image annotation tool.
Automation, Laboratory
Biopsy
Cell Nucleus
/ pathology
Colorectal Neoplasms
/ pathology
Deep Learning
Epithelial Cells
/ pathology
High-Throughput Screening Assays
Humans
Image Interpretation, Computer-Assisted
Microscopy
Pathology
Predictive Value of Tests
Reproducibility of Results
Time Factors
Workflow
active learning
annotations
computational pathology
deep learning
digital pathology
efficiency
epithelium
nuclei
open-source tool
tubules
Journal
The journal of pathology. Clinical research
ISSN: 2056-4538
Titre abrégé: J Pathol Clin Res
Pays: England
ID NLM: 101658534
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
16
05
2021
received:
23
02
2021
accepted:
22
05
2021
pubmed:
22
7
2021
medline:
9
2
2022
entrez:
21
7
2021
Statut:
ppublish
Résumé
Image-based biomarker discovery typically requires accurate segmentation of histologic structures (e.g. cell nuclei, tubules, and epithelial regions) in digital pathology whole slide images (WSIs). Unfortunately, annotating each structure of interest is laborious and often intractable even in moderately sized cohorts. Here, we present an open-source tool, Quick Annotator (QA), designed to improve annotation efficiency of histologic structures by orders of magnitude. While the user annotates regions of interest (ROIs) via an intuitive web interface, a deep learning (DL) model is concurrently optimized using these annotations and applied to the ROI. The user iteratively reviews DL results to either (1) accept accurately annotated regions or (2) correct erroneously segmented structures to improve subsequent model suggestions, before transitioning to other ROIs. We demonstrate the effectiveness of QA over comparable manual efforts via three use cases. These include annotating (1) 337,386 nuclei in 5 pancreatic WSIs, (2) 5,692 tubules in 10 colorectal WSIs, and (3) 14,187 regions of epithelium in 10 breast WSIs. Efficiency gains in terms of annotations per second of 102×, 9×, and 39× were, respectively, witnessed while retaining f-scores >0.95, suggesting that QA may be a valuable tool for efficiently fully annotating WSIs employed in downstream biomarker studies.
Identifiants
pubmed: 34288586
doi: 10.1002/cjp2.229
pmc: PMC8503896
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
542-547Subventions
Organisme : NCI NIH HHS
ID : R01 CA216579
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA220581
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA208236
Pays : United States
Organisme : NCI NIH HHS
ID : U24 CA199374
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA202752
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA239055
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA248226
Pays : United States
Organisme : NCI NIH HHS
ID : U54 CA254566
Pays : United States
Organisme : NIBIB NIH HHS
ID : R43 EB028736
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002548
Pays : United States
Informations de copyright
© 2021 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland & John Wiley & Sons, Ltd.
Références
BMC Bioinformatics. 2011 Oct 28;12:424
pubmed: 22034914
IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82
pubmed: 22641706
Sci Rep. 2017 Dec 4;7(1):16878
pubmed: 29203879
IEEE Trans Biomed Eng. 2012 May;59(5):1205-18
pubmed: 20570758
Nat Mach Intell. 2019 Feb;1(2):112-119
pubmed: 31187088
J Pathol Inform. 2016 Jul 26;7:29
pubmed: 27563488
J Pathol Inform. 2020 Aug 21;11:27
pubmed: 33042606
Comput Med Imaging Graph. 2017 Apr;57:50-61
pubmed: 27373749
Sci Data. 2020 Jun 19;7(1):185
pubmed: 32561748
Med Image Anal. 2020 Jul;63:101696
pubmed: 32330851
Med Image Anal. 2021 Feb;68:101903
pubmed: 33352373
Cancer Res. 2020 Mar 1;80(5):1199-1209
pubmed: 31874858
Med Image Anal. 2021 Jan;67:101859
pubmed: 33129150
Cancer Res. 2017 Nov 1;77(21):e83-e86
pubmed: 29092947
Artif Intell Med. 2020 Mar;103:101805
pubmed: 32143801
BMC Cancer. 2018 May 30;18(1):610
pubmed: 29848291
Front Med (Lausanne). 2019 Oct 15;6:222
pubmed: 31681779