Omeprazole suppresses endothelial calcium response and eNOS Ser1177 phosphorylation in porcine aortic endothelial cells.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Jul 2021
Historique:
received: 11 02 2021
accepted: 12 07 2021
pubmed: 23 7 2021
medline: 7 1 2022
entrez: 22 7 2021
Statut: ppublish

Résumé

Although high doses of proton pump inhibitors can elicit an anticancer effect, this strategy may impair vascular biology. In particular, their effects on endothelial Ca Omeprazole (10-1000 μM) suppressed both bradykinin (BK)- and thapsigargin-induced endothelial Ca Our results are the first to indicate that high doses of omeprazole may suppress both store-operated Ca

Sections du résumé

BACKGROUND BACKGROUND
Although high doses of proton pump inhibitors can elicit an anticancer effect, this strategy may impair vascular biology. In particular, their effects on endothelial Ca
METHODS AND RESULTS RESULTS
Omeprazole (10-1000 μM) suppressed both bradykinin (BK)- and thapsigargin-induced endothelial Ca
CONCLUSION CONCLUSIONS
Our results are the first to indicate that high doses of omeprazole may suppress both store-operated Ca

Identifiants

pubmed: 34291395
doi: 10.1007/s11033-021-06561-0
pii: 10.1007/s11033-021-06561-0
doi:

Substances chimiques

Nitric Oxide 31C4KY9ESH
Epoprostenol DCR9Z582X0
Nitric Oxide Synthase Type III EC 1.14.13.39
Omeprazole KG60484QX9
Bradykinin S8TIM42R2W
Calcium SY7Q814VUP

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5503-5511

Subventions

Organisme : Hamamatsu University School of Medicine
ID : 42351T 1013511
Organisme : Hamamatsu University School of Medicine
ID : 42351T 1013522

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Ghebremariam YT, LePendu P, Lee JC, Erlanson DA, Slaviero A, Shah NH, Leiper J, Cooke JP (2013) Unexpected effect of proton pump inhibitors: elevation of the cardiovascular risk factor asymmetric dimethylarginine. Circulation 128:845–853
pubmed: 23825361 doi: 10.1161/CIRCULATIONAHA.113.003602
Lazarus B, Chen Y, Wilson FP, Sang Y, Chang AR, Coresh J, Grams ME (2016) Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Intern Med 176:238–246
pubmed: 26752337 pmcid: 4772730 doi: 10.1001/jamainternmed.2015.7193
Peng YC, Lin CL, Yeh HZ, Chang CS, Wu YL, Kao CH (2016) Association between the use of proton pump inhibitors and the risk of ESRD in renal diseases: a population-based, case-control study. Medicine (Baltimore) 95:e3363
doi: 10.1097/MD.0000000000003363
Yoshida N, Yoshikawa T, Tanaka Y, Fujita N, Kassai K, Naito Y, Kondo M (2000) A new mechanism for anti-inflammatory actions of proton pump inhibitors–inhibitory effects on neutrophil-endothelial cell interactions. Aliment Pharmacol Ther 14(Suppl 1):74–81
pubmed: 10807407 doi: 10.1046/j.1365-2036.2000.014s1074.x
Goh W, Sleptsova-Freidrich I, Petrovic N (2014) Use of proton pump inhibitors as adjunct treatment for triple-negative breast cancers. An introductory study. J Pharm Pharm Sci 17:439–446
pubmed: 25224353 doi: 10.18433/J34608
Jin UH, Lee SO, Pfent C, Safe S (2014) The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis. BMC Cancer 14:498
pubmed: 25011475 pmcid: 4226953 doi: 10.1186/1471-2407-14-498
Richter J, Jimenez J, Nagatomo T, Toelen J, Brady P, Salaets T, Lesage F, Vanoirbeek J, Deprest J (2016) Proton-pump inhibitor omeprazole attenuates hyperoxia induced lung injury. J Transl Med 14:247
pubmed: 27567616 pmcid: 5002203 doi: 10.1186/s12967-016-1009-3
Han YM, Park JM, Kangwan N, Jeong M, Lee S, Cho JY, Ko WJ, Hahm KB (2015) Role of proton pump inhibitors in preventing hypergastrinemia-associated carcinogenesis and in antagonizing the trophic effect of gastrin. J Physiol Pharmacol 66:159–167
pubmed: 25903947
Wang BY, Zhang J, Wang JL, Sun S, Wang ZH, Wang LP, Zhang QL, Lv FF, Cao EY, Shao ZM, Fais S, Hu XC (2015) Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J Exp Clin Cancer Res 34:85
pubmed: 26297142 pmcid: 4546346 doi: 10.1186/s13046-015-0194-x
Paskeviciute M, Petrikaite V (2019) Proton pump inhibitors modulate transport of doxorubicin and its liposomal form into 2D And 3D breast cancer cell cultures. Cancer Manage Res 11:9761–9769
doi: 10.2147/CMAR.S224097
Pinheiro LC, Oliveira-Paula GH, Portella RL, Guimaraes DA, de Angelis CD, Tanus-Santos JE (2016) Omeprazole impairs vascular redox biology and causes xanthine oxidoreductase-mediated endothelial dysfunction. Redox Biol 9:134–143
pubmed: 27521759 pmcid: 4983109 doi: 10.1016/j.redox.2016.08.001
Yepuri G, Sukhovershin R, Nazari-Shafti TZ, Petrascheck M, Ghebre YT, Cooke JP (2016) Proton pump inhibitors accelerate endothelial senescence. Circ Res 118:e36–e42
pubmed: 27166251 pmcid: 4902745 doi: 10.1161/CIRCRESAHA.116.308807
Obata Y, Takeuchi K, Wei J, Hakamata A, Odagiri K, Nakajima Y, Watanabe H (2018) Interactions between bradykinin and plasmin in the endothelial Ca(2+) response. Mol Cell Biochem 445:179–186
pubmed: 29288468 doi: 10.1007/s11010-017-3263-y
Sakurada R, Odagiri K, Hakamata A, Kamiya C, Wei J, Watanabe H (2019) Calcium release from endoplasmic reticulum involves calmodulin-mediated NADPH oxidase-derived reactive oxygen species production in endothelial cells. Int J Mol Sci 20:1644
pmcid: 6480165 doi: 10.3390/ijms20071644 pubmed: 6480165
National Research Council (2011) Guide for the care and use of laboratory animals: eighth edition. The National Academies Press, Washington, DC
Shultz PJ, Tayeh MA, Marletta MA, Raij L (1991) Synthesis and action of nitric oxide in rat glomerular mesangial cells. Am J Physiol 261:F600–F606
pubmed: 1718166
Takeuchi K, Watanabe H, Tran QK, Ozeki M, Sumi D, Hayashi T, Iguchi A, Ignarro LJ, Ohashi K, Hayashi H (2004) Nitric oxide: inhibitory effects on endothelial cell calcium signaling, prostaglandin I
pubmed: 15023566 doi: 10.1016/j.cardiores.2003.12.028
Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601
pubmed: 10376602 pmcid: 10376602 doi: 10.1038/21218
Thomas SR, Chen K, Keaney JF Jr (2002) Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J Biol Chem 277:6017–6024
pubmed: 11744698 doi: 10.1074/jbc.M109107200
Sachs G (1984) Pump blockers and ulcer disease. N Engl J Med 310:785–786
pubmed: 6230536 doi: 10.1056/NEJM198403223101211
Mattsson JP, Vaananen K, Wallmark B, Lorentzon P (1991) Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Biochim Biophys Acta 1065:261–268
pubmed: 1647821 doi: 10.1016/0005-2736(91)90238-4
Fako VE, Wu X, Pflug B, Liu JY, Zhang JT (2015) Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J Med Chem 58:778–784
pubmed: 25513712 doi: 10.1021/jm501543u
Tran QK, Ohashi K, Watanabe H (2000) Calcium signalling in endothelial cells. Cardiovasc Res 48:13–22
pubmed: 11033104 doi: 10.1016/S0008-6363(00)00172-3
Freay A, Johns A, Adams DJ, Ryan US, Van Breemen C (1989) Bradykinin and inositol 1,4,5-trisphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pflugers Arch 414:377–384
pubmed: 2798038 doi: 10.1007/BF00585046
Mendelowitz D, Bacal K, Kunze DL (1992) Bradykinin-activated calcium influx pathway in bovine aortic endothelial cells. Am J Physiol 262:H942–H948
pubmed: 1566913
Petersen CC, Berridge MJ (1994) The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. J Biol Chem 269:32246–32253
pubmed: 7798225 doi: 10.1016/S0021-9258(18)31628-4
Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810
pubmed: 15788710 doi: 10.1152/physrev.00057.2003
Rahman S, Rahman T (2017) Unveiling some FDA-approved drugs as inhibitors of the store-operated Ca(2+) entry pathway. Sci Rep 7:12881
pubmed: 29038464 pmcid: 5643495 doi: 10.1038/s41598-017-13343-x
Derler I, Schindl R, Fritsch R, Heftberger P, Riedl MC, Begg M, House D, Romanin C (2013) The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 53:139–151
pubmed: 23218667 pmcid: 3580291 doi: 10.1016/j.ceca.2012.11.005
Jairaman A, Prakriya M (2013) Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 7:402–414
doi: 10.4161/chan.25292
Cooke JP (2004) Asymmetrical dimethylarginine: the Uber marker? Circulation 109:1813–1818
pubmed: 15096461 doi: 10.1161/01.CIR.0000126823.07732.D5
Onda K, Tong S, Beard S, Binder N, Muto M, Senadheera SN, Parry L, Dilworth M, Renshall L, Brownfoot F, Hastie R, Tuohey L, Palmer K, Hirano T, Ikawa M, Kaitu’u-Lino T, Hannan NJ (2017) Proton pump inhibitors decrease soluble fms-like tyrosine kinase-1 and soluble endoglin secretion, decrease hypertension, and rescue endothelial dysfunction. Hypertension 69:457–468
pubmed: 28115513 doi: 10.1161/HYPERTENSIONAHA.116.08408
Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE, Venema RC (2001) Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J Biol Chem 276:16587–16591
pubmed: 11340086 doi: 10.1074/jbc.M100229200
Sessa WC (2004) eNOS at a glance. J Cell Sci 117:2427–2429
pubmed: 15159447 doi: 10.1242/jcs.01165
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605
pubmed: 10376603 doi: 10.1038/21224
Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, Figeys D, Harrison DG, Berk BC, Aebersold R, Corson MA (1999) Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem 274:30101–30108
pubmed: 10514497 doi: 10.1074/jbc.274.42.30101
Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68-75
pubmed: 11397791
Zippel N, Loot AE, Stingl H, Randriamboavonjy V, Fleming I, Fisslthaler B (2018) Endothelial AMP-activated kinase alpha1 phosphorylates eNOS on Thr495 and decreases endothelial NO formation. Int J Mol Sci 19:2753
pmcid: 6165563 doi: 10.3390/ijms19092753 pubmed: 6165563
McCabe TJ, Fulton D, Roman LJ, Sessa WC (2000) Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J Biol Chem 275:6123–6128
pubmed: 10692402 doi: 10.1074/jbc.275.9.6123
Jaffe EA, Grulich J, Weksler BB, Hampel G, Watanabe K (1987) Correlation between thrombin-induced prostacyclin production and inositol trisphosphate and cytosolic free calcium levels in cultured human endothelial cells. J Biol Chem 262:8557–8565
pubmed: 3110148 doi: 10.1016/S0021-9258(18)47450-9
Alberghina M (2010) Phospholipase A(2): new lessons from endothelial cells. Microvasc Res 80:280–285
pubmed: 20380842 doi: 10.1016/j.mvr.2010.03.013
Wong MS, Vanhoutte PM (2010) COX-mediated endothelium-dependent contractions: from the past to recent discoveries. Acta Pharmacol Sin 31:1095–1102
pubmed: 20711228 pmcid: 4002305 doi: 10.1038/aps.2010.127
Oriji GK (1999) Cyclosporine A-induced prostacyclin release is maintained by extracellular calcium in rat aortic endothelial cells: role of protein kinase C. Prostaglandins Leukot Essent Fatty Acids 61:119–123
pubmed: 10509867 doi: 10.1054/plef.1999.0080
Choi J, Hammer LW, Hester RL (2002) Calcium-dependent synthesis of prostacyclin in ATP-stimulated venous endothelial cells. Hypertension 39:581–585
pubmed: 11882612 doi: 10.1161/hy0202.103289

Auteurs

Chiaki Kamiya (C)

Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan.

Keiichi Odagiri (K)

Center for Clinical Research, Hamamatsu University Hospital, 1-20-1 Handayama, Hamamatsu, Japan. kodagiri@hama-med.ac.jp.

Akio Hakamata (A)

Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan.

Ryugo Sakurada (R)

Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan.

Naoki Inui (N)

Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan.

Hiroshi Watanabe (H)

Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH