Measuring Postprandial Metabolic Flexibility to Assess Metabolic Health and Disease.


Journal

The Journal of nutrition
ISSN: 1541-6100
Titre abrégé: J Nutr
Pays: United States
ID NLM: 0404243

Informations de publication

Date de publication:
02 11 2021
Historique:
received: 30 05 2021
revised: 25 06 2021
accepted: 19 07 2021
pubmed: 23 7 2021
medline: 17 2 2022
entrez: 22 7 2021
Statut: ppublish

Résumé

Metabolic abnormalities substantially increase the risk of noncommunicable diseases, which are among the leading causes of mortality globally. Mitigating and preventing these adverse consequences remains challenging due to a limited understanding of metabolic health. Metabolic flexibility, a key tenet of metabolic health, encompasses the responsiveness of interrelated pathways to maintain energy homeostasis throughout daily physiologic challenges, such as the response to meal challenges. One critical underlying research gap concerns the measurement of postprandial metabolic flexibility, which remains incompletely understood. We concisely review the methodology for assessment of postprandial metabolic flexibility in recent human studies. We identify 3 commonalities of study design, specifically the nature of the challenge, nature of the response measured, and approach to data analysis. Primary interventions were acute short-term nutrition challenges, including single- and multiple-macronutrient tolerance tests. Postmeal challenge responses were measured via laboratory assays and instrumentation, based on a diverse set of metabolic flexibility indicators [e.g., energy expenditure (whole-body indirect calorimetry), glucose and insulin kinetics, metabolomics, transcriptomics]. Common standard approaches have been diabetes-centric with single-macronutrient challenges (oral-glucose-tolerance test) to characterize the postprandial response based on glucose and insulin metabolism; or broad measurements of energy expenditure with calculated macronutrient oxidation via indirect calorimetry. Recent methodological advances have included the use of multiple-macronutrient meal challenges that are more representative of physiologic meals consumed by free-living humans, combinatorial approaches for assays and instruments, evaluation of other metabolic flexibility indicators via precision health, systems biology, and temporal perspectives. Omics studies have identified potential novel indicators of metabolic flexibility, which provide greater granularity to prior evidence from canonical approaches. In summary, recent findings indicate the potential for an expanded understanding of postprandial metabolic flexibility, based on nonclassical measurements and methodology, which could represent novel dynamic indicators of metabolic diseases.

Identifiants

pubmed: 34293154
pii: S0022-3166(22)00428-X
doi: 10.1093/jn/nxab263
pmc: PMC8562077
doi:

Substances chimiques

Blood Glucose 0
Insulin 0

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

3284-3291

Subventions

Organisme : NICHD NIH HHS
ID : R01 HD075784
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES019776
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL007745
Pays : United States

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition.

Références

Recent Prog Horm Res. 1963;19:445-88
pubmed: 14284029
Diabetes Obes Metab. 2018 May;20(5):1193-1201
pubmed: 29316143
Nutrition. 2017 May;37:37-42
pubmed: 28359360
Metabolism. 2018 May;82:111-117
pubmed: 29305946
Lancet Diabetes Endocrinol. 2018 May;6(5):361-369
pubmed: 29503172
Cell Metab. 2020 Oct 6;32(4):676-688.e4
pubmed: 32791100
J Nutr. 2020 Aug 1;150(8):2031-2040
pubmed: 32597983
Cell Rep. 2018 Aug 21;24(8):2005-2012.e7
pubmed: 30134163
Cell Discov. 2018 Apr 17;4:17
pubmed: 29675266
Science. 2002 Mar 1;295(5560):1662-4
pubmed: 11872829
Diabetes Res Clin Pract. 2009 Feb;83(2):280-8
pubmed: 19097663
Metabolomics. 2018;14(4):46
pubmed: 29527144
Nat Metab. 2021 Jun;3(6):751-761
pubmed: 34158657
FASEB J. 2018 Oct;32(10):5447-5458
pubmed: 29718708
Diabetes Obes Metab. 2009 Mar;11(3):213-22
pubmed: 18564177
Nat Rev Endocrinol. 2020 Jul;16(7):341-342
pubmed: 32327737
J Nutr. 2021 Sep 4;151(9):2564-2573
pubmed: 34113999
Endocr Rev. 2018 Aug 1;39(4):489-517
pubmed: 29697773
Ageing Res Rev. 2018 Jan;41:1-17
pubmed: 29081381
Diabetes. 2020 Oct;69(10):2086-2093
pubmed: 32843567
Metabolism. 2020 Feb;103:154041
pubmed: 31785256
Sci Rep. 2018 Jun 6;8(1):8691
pubmed: 29875472
BMC Med. 2019 Nov 29;17(1):217
pubmed: 31779625
Sci Rep. 2020 Feb 3;10(1):1651
pubmed: 32015415
Nat Med. 2019 May;25(5):792-804
pubmed: 31068711
Diabetes Care. 2021 Jan;44(Suppl 1):S15-S33
pubmed: 33298413
FASEB J. 2019 Sep;33(9):10280-10290
pubmed: 31238007
Nutrients. 2018 May 16;10(5):
pubmed: 29772667
Cell Metab. 2019 Sep 3;30(3):447-461.e5
pubmed: 31378464
Metabolism. 2020 Mar;104:154142
pubmed: 31930973
Am J Physiol. 1956 Sep;187(1):15-24
pubmed: 13362583
J Appl Physiol (1985). 2020 Apr 1;128(4):872-883
pubmed: 32163335
Eur J Clin Nutr. 2017 Mar;71(3):301-305
pubmed: 28074889
Diabetes. 2020 Feb;69(2):181-192
pubmed: 31712321
Obesity (Silver Spring). 2020 Nov;28(11):2073-2077
pubmed: 32985108
Nat Commun. 2020 Mar 25;11(1):1559
pubmed: 32214088
Obes Rev. 2021 Feb;22(2):e13131
pubmed: 32815226
Diabetologia. 2020 Mar;63(3):462-472
pubmed: 31915891
Lancet Diabetes Endocrinol. 2018 May;6(5):416-426
pubmed: 29433995
Clin Nutr. 2020 Sep;39(9):2734-2742
pubmed: 31899037
Sci Rep. 2020 Aug 31;10(1):14343
pubmed: 32868770
J Nutr Biochem. 2017 May;43:156-165
pubmed: 28319853
Anal Chem. 2021 Feb 2;93(4):1924-1933
pubmed: 33448796
Eur J Appl Physiol. 2018 Jan;118(1):33-49
pubmed: 29080000
Sci Signal. 2019 Aug 13;12(594):
pubmed: 31409756
Cell Metab. 2018 Aug 7;28(2):207-216.e3
pubmed: 29909972
Nutrients. 2019 Oct 18;11(10):
pubmed: 31635368
Am J Clin Nutr. 2019 Jun 1;109(6):1555-1568
pubmed: 30997492
Obes Rev. 2020 Sep;21(9):e13040
pubmed: 32515127
Int J Exerc Sci. 2020 Dec 01;13(2):1756-1769
pubmed: 33414866
Cell Metab. 2017 May 2;25(5):1027-1036
pubmed: 28467922
Cell. 2021 Mar 18;184(6):1530-1544
pubmed: 33675692
Cell Metab. 2017 Jan 10;25(1):43-56
pubmed: 28094011
Metabolism. 2002 May;51(5):595-8
pubmed: 11979391
Int J Obes (Lond). 2017 Jun;41(6):887-893
pubmed: 28262678
J Nutr. 2019 Dec 1;149(12):2133-2144
pubmed: 31504709
Eur J Clin Nutr. 2017 Mar;71(3):318-322
pubmed: 27848941
Diabetes Obes Metab. 2018 Feb;20(2):245-256
pubmed: 28675686
Nat Med. 2020 Jun;26(6):964-973
pubmed: 32528151
Am J Clin Nutr. 1988 Apr;47(4):608-28
pubmed: 3281434
Diabetologia. 2018 Jan;61(1):101-107
pubmed: 28983719
J Endocr Soc. 2020 Aug 25;4(11):bvaa127
pubmed: 33134764
Lancet Diabetes Endocrinol. 2018 Sep;6(9):714-724
pubmed: 29859908
Nat Rev Dis Primers. 2019 Jul 11;5(1):47
pubmed: 31296866

Auteurs

Elaine A Yu (EA)

Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.

Ngoc-Anh Le (NA)

Biomarker Core Laboratory, Foundation for Atlanta Veterans Education and Research (FAVER), Atlanta Veterans Affairs Health Care System (AVAHCS), Atlanta, GA, USA.

Aryeh D Stein (AD)

Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH