The pharmacokinetic properties of artemether and lumefantrine in Malaysian patients with Plasmodium knowlesi malaria.
Plasmodium knowlesi
artemether
dihydroartemisinin
lumefantrine
pharmacokinetics
Journal
British journal of clinical pharmacology
ISSN: 1365-2125
Titre abrégé: Br J Clin Pharmacol
Pays: England
ID NLM: 7503323
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
revised:
07
07
2021
received:
13
04
2021
accepted:
16
07
2021
pubmed:
24
7
2021
medline:
12
4
2022
entrez:
23
7
2021
Statut:
ppublish
Résumé
The aim of this study was to assess the pharmacokinetic properties of artemether, lumefantrine and their active metabolites in Plasmodium knowlesi malaria. Malaysian adults presenting with uncomplicated P. knowlesi infections received six doses of artemether (1.7 mg/kg) plus lumefantrine (10 mg/kg) over 3 days. Venous blood and dried blood spot (DBS) samples were taken at predetermined time-points over 28 days. Plasma and DBS artemether, dihydroartemisinin, lumefantrine and desbutyl-lumefantrine were measured using liquid chromatography-mass spectrometry. Multi-compartmental population pharmacokinetic models were developed using plasma with or without DBS drug concentrations. Forty-one participants (mean age 45 years, 66% males) were recruited. Artemether-lumefantrine treatment was well tolerated and parasite clearance was prompt. Plasma and DBS lumefantrine concentrations were in close agreement and were used together in pharmacokinetic modelling, but only plasma concentrations of the other analytes were used because of poor correlation with DBS levels. The areas under the concentration-time curve (AUC The disposition of artemether, dihydroartemisinin and lumefantrine in knowlesi malaria largely parallels that in other human malarias. DBS lumefantrine concentrations can be used in pharmacokinetic studies but DBS technology is currently unreliable for the other analytes.
Substances chimiques
Antimalarials
0
Artemether, Lumefantrine Drug Combination
0
Artemisinins
0
Ethanolamines
0
Fluorenes
0
Artemether
C7D6T3H22J
Lumefantrine
F38R0JR742
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
691-701Informations de copyright
© 2021 British Pharmacological Society.
Références
Coatney GR, Collins WE, Warren M, Contacos PG. The Primate Malarias. Bethesda, MD: US Department of Health, Education and Welfare; 1971.
Singh B, Kim Sung L, Matusop A, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004;363(9414):1017-1024.
Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman WY, Vythilingam I. Plasmodium knowlesi infecting humans in Southeast Asia: what's next? PLoS Negl Trop Dis. 2020;14(12):e0008900.
Cox-Singh J, Davis TM, Lee KS, et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis. 2008;46(2):165-171.
World Health Organization. Guidelines for the Treatment of Malaria. Geneva: WHO; 2015.
Ministry of Health Malaysia. Management Guidelines of Malaria in Malaysia. Kuala Lumpur: Government of Malaysia; 2014.
Davis TM, Karunajeewa HA, Ilett KF. Artemisinin-based combination therapies for uncomplicated malaria. Med J Aust. 2005;182(4):181-185.
Kloprogge F, McGready R, Hanpithakpong W, et al. Lumefantrine and desbutyl-lumefantrine population pharmacokinetic-pharmacodynamic relationships in pregnant women with uncomplicated Plasmodium falciparum malaria on the Thailand-Myanmar border. Antimicrob Agents Chemother. 2015;59(10):6375-6384.
Grigg MJ, William T, Barber BE, et al. Artemether-lumefantrine versus chloroquine for the treatment of uncomplicated Plasmodium knowlesi malaria (CAN KNOW): an open-label randomized controlled trial. Clin Infect Dis. 2017;66(2):229-236.
Binh TQ, Ilett KF, Batty KT, et al. Oral bioavailability of dihydroartemisinin in Vietnamese volunteers and in patients with falciparum malaria. Br J Clin Pharmacol. 2001;51(6):541-546.
Newton P, Suputtamongkol Y, Teja-Isavadharm P, et al. Antimalarial bioavailability and disposition of artesunate in acute falciparum malaria. Antimicrob Agents Chemother. 2000;44(4):972-977.
Teja-Isavadharm P, Watt G, Eamsila C, et al. Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65(6):717-721.
Djimde A, Lefevre G. Understanding the pharmacokinetics of Coartem®. Malar J. 2009;8(Suppl 1):S4.
Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505(7481):50-55.
Migasena P, Maegraith BG. Intestinal absorption in malaria. I. The absorption of an amino acid (AIB-i-14C) across the gut membrane in normal and in Plasmodium knowlesi-infected monkeys. Ann Trop Med Parasitol. 1969;63(4):439-448.
Ando H, Hisaka A, Suzuki H. A new physiologically based pharmacokinetic model for the prediction of gastrointestinal drug absorption: translocation model. Drug Metab Dispos. 2015;43(4):590-602.
Taneja I, Erukala M, Raju KS, Singh SP, Wahajuddin S. Dried blood spots in bioanalysis of antimalarials: relevance and challenges in quantitative assessment of antimalarial drugs. Bioanalysis. 2013;5(17):2171-2186.
Davis TM, Moore BR, Salman S, Page-Sharp M, Batty KT, Manning L. Use of quantitative pharmacology tools to improve malaria treatments. Expert Rev Clin Pharmacol. 2016;9(2):303-316.
Karunajeewa HA, Ilett KF, Dufall K, et al. Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob Agents Chemother. 2004;48(8):2966-2972.
Salman S, Page-Sharp M, Griffin S, et al. Population pharmacokinetics of artemether, lumefantrine, and their respective metabolites in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother. 2011;55(11):5306-5313.
Lee KS, Divis PC, Zakaria SK, et al. Plasmodium knowlesi: reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog. 2011;7(4):e1002015.
Blessborn D, Skold K, Zeeberg D, Kaewkhao K, Skold O, Ahnoff M. Heat stabilization of blood spot samples for determination of metabolically unstable drug compounds. Bioanalysis. 2013;5(1):31-39.
Wong RP, Salman S, Ilett KF, Siba PM, Mueller I, Davis TM. Desbutyl-lumefantrine is a metabolite of lumefantrine with potent in vitro antimalarial activity that may influence artemether-lumefantrine treatment outcome. Antimicrob Agents Chemother. 2011;55(3):1194-1198.
Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25-36.
Salman S, Bendel D, Lee TC, Templeton D, Davis TM. Pharmacokinetics of a novel sublingual spray formulation of the antimalarial drug artemether in healthy adults. Antimicrob Agents Chemother. 2015;59(6):3197-3207.
Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481-504.
Green JA, Mohamed K, Goyal N, et al. Pharmacokinetic interactions between tafenoquine and dihydroartemisinin-piperaquine or artemether-lumefantrine in healthy adult subjects. Antimicrob Agents Chemother. 2016;60(12):7321-7332.
Ashley EA, Stepniewska K, Lindegardh N, et al. Pharmacokinetic study of artemether-lumefantrine given once daily for the treatment of uncomplicated multidrug-resistant falciparum malaria. Trop Med Int Health. 2007;12(2):201-208.
Lefevre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet®). Clin Drug Investig. 1999;18(6):467-480.
Ezzet F, van Vugt M, Nosten F, Looareesuwan S, White NJ. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob Agents Chemother. 2000;44(3):697-704.
Hatz C, Soto J, Nothdurft HD, et al. Treatment of acute uncomplicated falciparum malaria with artemether-lumefantrine in nonimmune populations: a safety, efficacy, and pharmacokinetic study. Am J Trop Med Hyg. 2008;78(2):241-247.
Kloprogge F, Piola P, Dhorda M, et al. Population pharmacokinetics of lumefantrine in pregnant and nonpregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. CPT Pharmacometrics Syst Pharmacol. 2013;2:e83.
Abdulla S, Sagara I, Borrmann S, et al. Efficacy and safety of artemether-lumefantrine dispersible tablets compared with crushed commercial tablets in African infants and children with uncomplicated malaria: a randomised, single-blind, multicentre trial. Lancet. 2008;372(9652):1819-1827.
van Agtmael MA, Cheng-Qi S, Qing JX, Mull R, van Boxtel CJ. Multiple dose pharmacokinetics of artemether in Chinese patients with uncomplicated falciparum malaria. Int J Antimicrob Agents. 1999;12(2):151-158.
Daneshvar C, Davis TM, Cox-Singh J, et al. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis. 2009;49(6):852-860.
Nyunt MM, Nguyen VK, Kajubi R, et al. Artemether-lumefantrine pharmacokinetics and clinical response are minimally altered in pregnant Ugandan women treated for uncomplicated falciparum malaria. Antimicrob Agents Chemother. 2015;60(3):1274-1282.
WorldWide Antimalarial Resistance Network Lumefantrine PK/PD Study Group. Artemether-lumefantrine treatment of uncomplicated Plasmodium falciparum malaria: a systematic review and meta-analysis of day 7 lumefantrine concentrations and therapeutic response using individual patient data. BMC Med. 2015;13(1):227.
Collins WE. Plasmodium knowlesi: a malaria parasite of monkeys and humans. Annu Rev Entomol. 2012;57(1):107-121.
Gogtay N, Kannan S, Thatte UM, Olliaro PL, Sinclair D. Artemisinin-based combination therapy for treating uncomplicated Plasmodium vivax malaria. Cochrane Database Syst Rev. 2013;(10):CD008492.
Omari AA, Gamble C, Garner P. Artemether-lumefantrine (six-dose regimen) for treating uncomplicated falciparum malaria. Cochrane Database Syst Rev. 2005;(4):CD005564.