Effect of dose and dose rate of gamma irradiation on the formation of micronuclei in bone marrow cells isolated from whole-body-irradiated mice.
DNA damage
dose rate
ionizing radiation
micronuclei
systemic effects
Journal
Environmental and molecular mutagenesis
ISSN: 1098-2280
Titre abrégé: Environ Mol Mutagen
Pays: United States
ID NLM: 8800109
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
revised:
10
07
2021
received:
10
04
2021
accepted:
18
07
2021
pubmed:
24
7
2021
medline:
30
11
2021
entrez:
23
7
2021
Statut:
ppublish
Résumé
It is well-known that the cytotoxicity and mutagenic effects of high dose rate (HDR) ionizing radiation (IR) are increased by increasing the dose but less is known about the effects of chronic low dose rate (LDR). In vitro, we have shown that in addition to the immediate interaction of IR with DNA (the direct and indirect effects), low doses and chronic LDR exposure induce endogenous oxidative stress. During elevated oxidative stress, reactive oxygen species (ROS) react with DNA modifying its structure. Here, BL6 mice were exposed to IR at LDR and HDR and were then sacrificed 3 hours and 3 weeks after exposure to examine early and late effects of IR. The levels of micronuclei, MN, were determined in bone marrow cells. Our data indicate that the effects of 200 mGy on MN-induction are transient, but 500 and 1000 mGy (both HDR and LDR) lead to increased levels of MN up to 3 weeks after the exposure.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
422-427Informations de copyright
© 2021 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals LLC on behalf of Environmental Mutagen Society.
Références
Bartenbach, G. & Wittmann, G. (1976) The in vitro effect of diethylaminoethyl dextran on stimulation of mouse lymphocytes, and on the mitogenic activity of concanavalin A and lipopolysaccharide. Zeitschrift für Immunitätsforschung. Immunobiology, 151(1), 391-404.
Bayrakova, A., Filev, G., Baev, I. & Kalina, I. (1987) Reciprocal translocations in germ cells of male mice receiving external gamma-irradiation. Mutation Research, 176(1), 53-58.
Belli, M., Sapora, O. & Tabocchini, M.A. (2002) Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. Journal of Radiation Research (Tokyo), 43(Suppl), S13-S19.
Chen, M., Zhao, J., Luo, C., Pandi, S.P., Penalva, R.G., Fitzgerald, D.C. et al. (2012) Para-inflammation-mediated retinal recruitment of bone marrow-derived myeloid cells following whole-body irradiation is CCL2 dependent. Glia, 60(5), 833-842.
Dikomey, E. & Brammer, I. (2000) Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose rates and plating conditions in a normal human fibroblast line. International Journal of Radiation Biology, 76(6), 773-781.
Doenhoff, M.J., Janossy, G. & Kerbel, R.S. (1976) Enumeration of polyclonal mitogen-responsive cells in different lymphoid tissues of the mouse. Immunology, 30(3), 367-378.
Eken, S.M., Christersdottir, T., Winski, G., Sangsuwan, T., Jin, H., Chernogubova, E. et al. (2019) miR-29b mediates the chronic inflammatory response in radiotherapy-induced vascular disease. JACC: Basic to Translational Science, 4(1), 72-82.
Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Parry, J. et al. (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis, 26(1), 125-132.
Fotouhi, A., Cornella, N., Ramezani, M., Wojcik, A., & Haghdoost, S. (2015) Investigation of micronucleus induction in MTH1 knockdown cells exposed to UVA, UVB or UVC. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 793, 161-165. https://doi.org/10.1016/j.mrgentox.2015.06.
Gekara, N.O. (2017) DNA damage-induced immune response: micronuclei provide key platform. The Journal of Cell Biology, 216(10), 2999-3001.
Georgakilas, A.G., Redon, C.E., Ferguson, N.F., Kryston, T.B., Parekh, P., Dickey, J.S. et al. (2014) Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol. Cancer Letters, 353(2), 248-257.
Godoy, P., Pour Khavari, A., Rizzo, M., Sakamoto-Hojo, E.T. & Haghdoost, S. (2020) Targeting NRF2, regulator of antioxidant system, to sensitize glioblastoma neurosphere cells to radiation-induced oxidative stress. Oxidative Medicine and Cellular Longevity, 2020, 2534643.
Hada, M. & Georgakilas, A.G. (2008) Formation of clustered DNA damage after high-LET irradiation: a review. Journal of Radiation Research, 49(3), 203-210.
Haghdoost, S., Czene, S., Naslund, I., Skog, S. & Harms-Ringdahl, M. (2005) Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radical Research, 39(2), 153-162.
Haghdoost, S., Sjolander, L., Czene, S. & Harms-Ringdahl, M. (2006) The nucleotide pool is a significant target for oxidative stress. Free Radical Biology & Medicine, 41(4), 620-626.
Halle, M., Gabrielsen, A., Paulsson-Berne, G., Gahm, C., Agardh, H.E., Farnebo, F. et al. (2010) Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. Journal of the American College of Cardiology, 55(12), 1227-1236.
Helleday, T., Eshtad, S. & Nik-Zainal, S. (2014) Mechanisms underlying mutational signatures in human cancers. Nature Reviews. Genetics, 15(9), 585-598.
Lafargue, A., Degorre, C., Corre, I., Alves-Guerra, M.C., Gaugler, M.H., Vallette, F. et al. (2017) Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radical Biology & Medicine, 108, 750-759.
Li, L., Story, M. & Legerski, R.J. (2001) Cellular responses to ionizing radiation damage. International Journal of Radiation Oncology, Biology, Physics, 49(4), 1157-1162.
Lorenz, R., Deubel, W., Leuner, K., Gollner, T., Hochhauser, E. & Hempel, K. (1994) Dose and dose-rate dependence of the frequency of HPRT deficient T lymphocytes in the spleen of the 137Cs gamma-irradiated mouse. International Journal of Radiation Biology, 66(3), 319-326.
Lyon, M.F., Phillips, R.J. & Bailey, H.J. (1972) Mutagenic effects of repeated small radiation doses to mouse spermatogonia. I. Specific-locus mutation rates. Mutation Research, 15(2), 185-190.
Mavragani, I.V., Laskaratou, D.A., Frey, B., Candeias, S.M., Gaipl, U.S., Lumniczky, K. et al. (2016) Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicology Research (Cambridge), 5(1), 12-33.
Mavragani, I.V., Nikitaki, Z., Souli, M.P., Aziz, A., Nowsheen, S., Aziz, K. et al. (2017) Complex DNA damage: a route to radiation-induced genomic instability and carcinogenesis. Cancers (Basel), 9(7), 91. https://doi.org/10.3390/cancers9070091.
Michaels, M.L. & Miller, J.H. (1992) The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8 hydroxyguanine (7,8 dihydro 8 oxoguanine). Journal of Bacteriology, 174(20), 6321-6325.
Mishra, O.P., Popov, A.V., Pietrofesa, R.A., Hwang, W.T., Andrake, M., Nakamaru-Ogiso, E. et al. (2020) Radiation activates myeloperoxidase (MPO) to generate active chlorine species (ACS) via a dephosphorylation mechanism - inhibitory effect of LGM2605. Biochimica et Biophysica Acta-General Subjects, 1864(7), 129548.
Nagle, P.W., Hosper, N.A., Barazzuol, L., Jellema, A.L., Baanstra, M., van Goethem, M.J. et al. (2018) Lack of DNA damage response at low radiation doses in adult stem cells contributes to organ dysfunction. Clinical Cancer Research, 24(24), 6583-6593.
Nakad, R. & Schumacher, B. (2016) DNA damage response and immune defense: Links and mechanisms. Frontiers in Genetics, 7, 147.
Nakamura, A., Itaki, C., Saito, A., Yonezawa, T., Aizawa, K., Hirai, A. et al. (2017) Possible benefits of tomato juice consumption: a pilot study on irradiated human lymphocytes from healthy donors. Nutrition Journal, 16(1), 27.
Nastasi, C., Mannarino, M. & D'Incalci, M. (2020) DNA damage response and immune defense. International Journal of Molecular Sciences, 21(20), 7504.
Ndrepepa, G. (2019) Myeloperoxidase - a bridge linking inflammation and oxidative stress with cardiovascular disease. Clinica Chimica Acta, 493, 36-51.
Pfeiffer, P., Goedecke, W. & Obe, G. (2000) Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis, 15(4), 289-302.
Redon, C.E., Dickey, J.S., Nakamura, A.J., Kareva, I.G., Naf, D., Nowsheen, S. et al. (2010) Tumors induce complex DNA damage in distant proliferative tissues in vivo. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 17992-17997.
Rodrigues-Moreira, S., Moreno, S.G., Ghinatti, G., Lewandowski, D., Hoffschir, F., Ferri, F. et al. (2017) Low-dose irradiation promotes persistent oxidative stress and decreases self-renewal in hematopoietic stem cells. Cell Reports, 20(13), 3199-3211.
Russell, W.L. (1965) Effect of the interval between irradiation and conception on mutation frequency in female mice. Proceedings of the National Academy of Sciences of the United States of America, 54(6), 1552-1557.
Russell, W.L., Russell, L.B. & Kelly, E.M. (1958) Radiation dose rate and mutation frequency. Science, 128(3338), 1546-1550.
Sangsuwan, T. & Haghdoost, S. (2008) The nucleotide pool, a target for low-dose gamma-ray-induced oxidative stress. Radiation Research, 170(6), 776-783.
Shakeri Manesh, S., Sangsuwan, T., Pour Khavari, A., Fotouhi, A., Emami, S.N. & Haghdoost, S. (2017) MTH1, an 8-oxo-2′-deoxyguanosine triphosphatase, and MYH, a DNA glycosylase, cooperate to inhibit mutations induced by chronic exposure to oxidative stress of ionising radiation. Mutagenesis, 32, 389-396.
Shakeri Manesh, S., Deperas-Kaminska, M., Fotouhi, A., Sangsuwan, T., Harms-Ringdahl, M., Wojcik, A. et al. (2014) Mutations and chromosomal aberrations in hMTH1-transfected and non-transfected TK6 cells after exposure to low dose rates of gamma radiation. Radiation and Environmental Biophysics, 53(2), 417-425.
Shakeri Manesh, S., Sangsuwan, T., Wojcik, A. & Haghdoost, S. (2015) Studies of adaptive response and mutation induction in MCF-10A cells following exposure to chronic or acute ionizing radiation. Mutation Research, 780, 55-59.
Siva, S., Lobachevsky, P., MacManus, M.P., Kron, T., Moller, A., Lobb, R.J. et al. (2016) Radiotherapy for non-small cell lung cancer induces DNA damage response in both irradiated and out-of-field Normal tissues. Clinical Cancer Research, 22(19), 4817-4826.
Sorensen, K.J., Zetterberg, L.A., Nelson, D.O., Grawe, J. & Tucker, J.D. (2000) The in vivo dose rate effect of chronic gamma radiation in mice: translocation and micronucleus analyses. Mutation Research, 457(1-2), 125-136.
Teresa Pinto, A., Laranjeiro Pinto, M., Patricia Cardoso, A., Monteiro, C., Teixeira Pinto, M., Filipe Maia, A. et al. (2016) Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Scientific Reports, 6, 18765.
Tucker, J.D., Sorensen, K.J., Chu, C.S., Nelson, D.O., Ramsey, M.J., Urlando, C. et al. (1998) The accumulation of chromosome aberrations and Dlb-1 mutations in mice with highly fractionated exposure to gamma radiation. Mutation Research, 400(1-2), 321-335.
Xu, Y. (2006) DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nature Reviews. Immunology, 6(4), 261-270.
Yoshida, T., Goto, S., Kawakatsu, M., Urata, Y. & Li, T.S. (2012) Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radical Research, 46(2), 147-153.