Neurotrophic Effect of Magnesium Comenate in Normal and under Conditions of Oxidative Stress in Culture of Chicken Spinal Ganglia.
Animals
Carboxylic Acids
/ pharmacology
Chick Embryo
Ganglia, Spinal
/ drug effects
Hydrogen Peroxide
/ antagonists & inhibitors
Magnesium Compounds
/ pharmacology
Neuronal Outgrowth
/ drug effects
Neuroprotective Agents
/ pharmacology
Oxidative Stress
Pyrones
/ pharmacology
Tissue Culture Techniques
magnesium comenate
neurite growth
neurotrophic activity
oxidative stress
spinal ganglia
Journal
Bulletin of experimental biology and medicine
ISSN: 1573-8221
Titre abrégé: Bull Exp Biol Med
Pays: United States
ID NLM: 0372557
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
received:
01
12
2020
pubmed:
24
7
2021
medline:
8
1
2022
entrez:
23
7
2021
Statut:
ppublish
Résumé
The neurotrophic properties of magnesium comenate were studied under standard conditions and under conditions of oxidative stress. It was found that magnesium comenate has a stimulating effect on the neurotrophic processes of the spinal ganglia under normal conditions and under conditions of oxidative stress. Under standard conditions, magnesium comenate exhibits neurotrophic activity at a concentration of 0.0001 mM, under conditions of oxidative stress, magnesium comenate exhibits neurotrophic activity at concentration 0.1 mM.
Identifiants
pubmed: 34297285
doi: 10.1007/s10517-021-05223-2
pii: 10.1007/s10517-021-05223-2
doi:
Substances chimiques
Carboxylic Acids
0
Magnesium Compounds
0
Neuroprotective Agents
0
Pyrones
0
comenic acid
0
Hydrogen Peroxide
BBX060AN9V
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
338-341Informations de copyright
© 2021. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Belousova MA, Korsakova EA, Gorodetskaya EA, Kalenikova EI, Medvedev OS. New antioxidants as neuroprotective agents for the treatment of ischemic brain injury and neurodegenerative diseases. Eksp. Klin. Farmakol. 2014;77(11):36-44. Russian.
pubmed: 25668946
Illarioshkin SN. Magnesium deficiency: some neurological aspects and ways of correction. Nervous diseases. Nervn. Bol. 2005;(1):37-40. Russian.
Kudrin AV, Gromova OA. Trace elements in neurology. Moscow, 2006. Russian.
Lopatina EV, Karetskij AV, Krylov BV. Patent RU No. 2362554. Regenerating resolvent and ways of treatment by means of this agent. Bull. No. 21. Published July 27, 2009.
Shurygin AJ, Shurygina LV, Lobova NN. Patent RU No. 2459623. Method of producing comenic acid. Bull. No. 24. Published August 27, 2012.
Shurygina LV, Zlishcheva EI, Kravtsov AA, Androsova TV, Zlishcheva LI, Skorokhod NS, Poleshchuk LA. Patent RU No. 2528914. neuroprotective pharmaceutical agent. Bull. No. 26. Published September 20, 2014.
Shurygin AYa. Baliz Drug. Krasnodar, 2002. Russian.
Shurygina LV, Zlishcheva EI, Kravtsov AA. Neurotrophic Action of Comenic Acid and Its Derivatives Potassium Comenate and Calcium Comenate. Bull. Exp. Biol. Med. 2018;165(4):465-469. doi: https://doi.org/10.1007/s10517-018-4195-6
doi: 10.1007/s10517-018-4195-6
pubmed: 30121906
Shurygina LV, Zlishcheva EI, Khablyuk VV, Kravtsova AN, Abramova NO, Zlishcheva LI, Kravtsov AA. Comparative Analysis of Antioxidant Properties of Comenic Acid and Potassium Comenate in Modeled Immobilization Stress. Bull. Exp. Biol. Med. 2015;159(4):466-468. doi: https://doi.org/10.1007/s10517-015-2993-7 .
doi: 10.1007/s10517-015-2993-7
pubmed: 26388574
Shurygina LV, Kravtsov AA, Zlishcheva EI, Khaspekov LG. The in vitro and in vivo neuroprotective activity of sodium comenate in stress. Neurochem. J. 2017;11(3):250-254.
doi: 10.1134/S1819712417020118
Allani PK, Sum T, Bhansali SG, Mukherjee SK, Sonee M. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons. Toxicol. Appl. Pharmacol. 2004;196(1):29-36. doi: https://doi.org/10.1016/j.taap.2003.12.010
doi: 10.1016/j.taap.2003.12.010
pubmed: 15050405
Boldyrev A, Bulygina E, Yuneva M, Schoner W. Na/K-ATPase regulates intracellular ROS level in cerebellum neurons. Ann. N.Y. Acad. Sci. 2003;986:519-521. doi: https://doi.org/10.1111/j.1749-6632.2003.tb07238.x
doi: 10.1111/j.1749-6632.2003.tb07238.x
pubmed: 12763874
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490-503. doi: https://doi.org/10.1016/j.redox.2018.01.008
doi: 10.1016/j.redox.2018.01.008
pubmed: 29413961
pmcid: 5881419
Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W, Bennett MVL, Chen J. Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology. 2018;134(Pt B):208-217. doi: https://doi.org/10.1016/j.neuropharm.2017.11.011
Wilson C, González-Billault C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front. Cell. Neurosci. 2015;9:381. doi: https://doi.org/10.3389/fncel.2015.00381
doi: 10.3389/fncel.2015.00381
pubmed: 26483635
pmcid: 4588006