The archaeology of climate change: The case for cultural diversity.
archaeology
climate change
climate science
cultural diversity
resilience
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
27 07 2021
27 07 2021
Historique:
entrez:
24
7
2021
pubmed:
25
7
2021
medline:
15
12
2021
Statut:
ppublish
Résumé
Anthropogenic climate change is currently driving environmental transformation on a scale and at a pace that exceeds historical records. This represents an undeniably serious challenge to existing social, political, and economic systems. Humans have successfully faced similar challenges in the past, however. The archaeological record and Earth archives offer rare opportunities to observe the complex interaction between environmental and human systems under different climate regimes and at different spatial and temporal scales. The archaeology of climate change offers opportunities to identify the factors that promoted human resilience in the past and apply the knowledge gained to the present, contributing a much-needed, long-term perspective to climate research. One of the strengths of the archaeological record is the cultural diversity it encompasses, which offers alternatives to the solutions proposed from within the Western agro-industrial complex, which might not be viable cross-culturally. While contemporary climate discourse focuses on the importance of biodiversity, we highlight the importance of cultural diversity as a source of resilience.
Identifiants
pubmed: 34301875
pii: 2108537118
doi: 10.1073/pnas.2108537118
pmc: PMC8325276
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2021 the Author(s). Published by PNAS.
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Science. 2013 Mar 8;339(6124):1198-201
pubmed: 23471405
Nat Ecol Evol. 2021 Mar;5(3):273-284
pubmed: 33462488
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14483-14491
pubmed: 27956613
Sci Data. 2020 Jun 30;7(1):201
pubmed: 32606396
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8287-8294
pubmed: 32284414
Nature. 2021 Mar;591(7851):539-550
pubmed: 33762769
PLoS One. 2019 Jun 19;14(6):e0217996
pubmed: 31216315
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6209-6214
pubmed: 28559353
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3501-5
pubmed: 25114253
Nature. 2021 Jan;589(7843):548-553
pubmed: 33505038
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6171-7
pubmed: 24753601
Nat Commun. 2014 Dec 04;5:5618
pubmed: 25472022
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8250-8253
pubmed: 32284423
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24127-24137
pubmed: 32900937
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22008-13
pubmed: 21135208
Sci Data. 2020 Apr 14;7(1):115
pubmed: 32286335
Science. 2001 Jan 5;291(5501):58-9
pubmed: 11192012
Science. 2014 Aug 29;345(6200):1045-8
pubmed: 25103408
Sci Rep. 2018 Mar 15;8(1):4623
pubmed: 29545528
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8271-8279
pubmed: 32284418
J Hum Evol. 2015 Oct;87:5-20
pubmed: 26315724
Science. 1993 Aug 20;261(5124):995-1004
pubmed: 17739617
Sci Rep. 2017 Jul 19;7(1):5848
pubmed: 28725004
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8295-8302
pubmed: 32284416