Peripheral microcirculatory abnormalities are associated with cardiovascular risk in systemic sclerosis: a nailfold video capillaroscopy study.
Adult
Aged
Capillaries
/ diagnostic imaging
Cardiovascular Diseases
/ complications
Carotid Intima-Media Thickness
Female
Heart Disease Risk Factors
Humans
Male
Microcirculation
Microscopic Angioscopy
Middle Aged
Nails
/ diagnostic imaging
Pulse Wave Analysis
Risk Factors
Scleroderma, Systemic
/ complications
Atherosclerosis
Cardiovascular disease
Nailfold video capillaroscopy
Systemic sclerosis
Journal
Clinical rheumatology
ISSN: 1434-9949
Titre abrégé: Clin Rheumatol
Pays: Germany
ID NLM: 8211469
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
received:
16
02
2021
accepted:
25
05
2021
revised:
23
05
2021
pubmed:
28
7
2021
medline:
20
11
2021
entrez:
27
7
2021
Statut:
ppublish
Résumé
Microvascular dysfunction is the key element in the pathogenesis of systemic sclerosis (SSc), whereas the contribution of large and medium size vessel abnormalities is yet to be established. The aim of the present study is to assess the association between micro- and macrovascular function by utilizing a broad spectrum of assessments of vascular performance. We included consecutive, consenting SSc patients who underwent nailfold video capillaroscopy (NVC) for microcirculation evaluation. Peripheral and central systolic and diastolic blood pressure, carotid intima-media thickness (cIMT), aortic augmentation index (AIx) corrected for a heart rate of 75 beats per minute (AIx-75), and carotid-femoral pulse wave velocity (PWV) were also performed to assess macrovascular function. Cardiovascular risk disease (CVD) algorithms were also calculated and included in the analysis. A total of 81 patients (6 males) were studied with mean age 55.44 ± 13.40 years. Reduced capillary density was inversely correlated with arterial stiffness (Alx-75) and augmentation pressure (r = - 0.262, p = 0.018, and r = - 0.249, p = 0.025 respectively). Alx was significantly lower in the early compared to late pattern (28.24 ± 11.75 vs 35.63 ± 10.47, p = 0.036). A significant trend was found among NVC patterns with Alx-75 values being higher with the progression of microangiopathy towards the "late" group (26.36 ± 10.90 vs 30.81 ± 11.59 vs 35.21 ± 7.90, p = 0.027 for trend). Similarly, Framingham risk score and Atherosclerotic Cardiovascular Disease score were progressively higher across the worsening NVC patterns (4.10 ± 4.13 vs 2.99 ± 2.72 vs 6.36 ± 5.65, p = 0.023, and 6.99 ± 7.18 vs 5.63 ± 4.41 vs 12.09 ± 9.90, p = 0.019, respectively, for trends). Finally, QRISK3 (10-year cardiovascular disease risk) and ASCVD (Atherosclerotic Cardiovascular Disease) scores were inversely correlated with the number of capillaries (r = - 0.231, p = 0.048, and r = - 0.260, p = 0.038 respectively). These data suggest that CVD risk scores and macrovascular parameters are strongly correlated with microvasculopathy in patients with SSc. Key Points • Microangiopathy is the hallmark of SSc, but the relationship between subclinical atherosclerosis and small vessel disease remains unknown. • Arterial stiffening and CVD risk scores are positively associated with the degree of progression of peripheral microvasculopathy assessed with NVC. • The results of the study suggest an association between NVC abnormalities and higher CVD risk in SSc patients.
Identifiants
pubmed: 34312764
doi: 10.1007/s10067-021-05795-4
pii: 10.1007/s10067-021-05795-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4957-4968Informations de copyright
© 2021. International League of Associations for Rheumatology (ILAR).
Références
Denton CP, Khanna D (2017) Systemic sclerosis. Lancet 390(10103):1685–1699. https://doi.org/10.1016/s0140-6736(17)30933-9
doi: 10.1016/s0140-6736(17)30933-9
pubmed: 28413064
Poudel DR, Jayakumar D, Danve A, Sehra ST, Derk CT (2018) Determinants of mortality in systemic sclerosis: a focused review. Rheumatol Int 38(10):1847–1858. https://doi.org/10.1007/s00296-017-3826-y
doi: 10.1007/s00296-017-3826-y
pubmed: 29116439
Tyndall AJ, Bannert B, Vonk M et al (2010) Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 69(10):1809–1815. https://doi.org/10.1136/ard.2009.114264
doi: 10.1136/ard.2009.114264
pubmed: 20551155
Derk CT, Jimenez SA (2003) Systemic sclerosis: current views of its pathogenesis. Autoimmun Rev 2(4):181–191. https://doi.org/10.1016/s1568-9972(03)00005-3
doi: 10.1016/s1568-9972(03)00005-3
pubmed: 12848944
Pagkopoulou E, Poutakidou M, Garyfallos A, Kitas G, Dimitroulas T (2017) Cardiovascular risk in systemic sclerosis: micro- and macro-vascular involvement. Indian Journal of Rheumatology 12(6):211–217. https://doi.org/10.4103/0973-3698.219080
doi: 10.4103/0973-3698.219080
Frech T, Walker AE, Barrett-O’Keefe Z, Hopkins PN, Richardson RS, Wray DW, Donato AJ (2015) Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction. Clin Rheumatol 34(5):905–913. https://doi.org/10.1007/s10067-014-2834-5
doi: 10.1007/s10067-014-2834-5
pubmed: 25511849
Aviña-Zubieta JA, Man A, Yurkovich M, Huang K, Sayre EC, Choi HK (2016) Early cardiovascular disease after the diagnosis of systemic sclerosis. Am J Med 129(3):324–331. https://doi.org/10.1016/j.amjmed.2015.10.037
doi: 10.1016/j.amjmed.2015.10.037
pubmed: 26603342
Piccione MC, Bagnato G, Zito C, Di Bella G, Caliri A, Catalano M, Longordo C, Oreto G, Bagnato G, Carerj S (2011) Early identification of vascular damage in patients with systemic sclerosis. Angiology 62(4):338–343. https://doi.org/10.1177/0003319710387918
doi: 10.1177/0003319710387918
pubmed: 21474468
Liu J, Zhang Y, Cao TS, Duan YY, Yuan LJ, Yang YL, Li Y, Yao L (2011) Preferential macrovasculopathy in systemic sclerosis detected by regional pulse wave velocity from wave intensity analysis: comparisons of local and regional arterial stiffness parameters in cases and controls. Arthritis Care Res (Hoboken) 63(4):579–587. https://doi.org/10.1002/acr.20306
doi: 10.1002/acr.20306
Au K, Singh MK, Bodukam V, Bae S, Maranian P, Ogawa R, Spiegel B, McMahon M, Hahn B, Khanna D (2011) Atherosclerosis in systemic sclerosis: a systematic review and meta-analysis. Arthritis Rheum 63(7):2078–2090. https://doi.org/10.1002/art.30380
doi: 10.1002/art.30380
pubmed: 21480189
pmcid: 3128188
Panopoulos S, Tektonidou M, Drosos AA et al (2018) Prevalence of comorbidities in systemic sclerosis versus rheumatoid arthritis: a comparative, multicenter, matched-cohort study. Arthritis Res Ther 20(1):267. https://doi.org/10.1186/s13075-018-1771-0
doi: 10.1186/s13075-018-1771-0
pubmed: 30514359
pmcid: 6280404
Dimitroulas T, Baniotopoulos P, Pagkopoulou E, Soulaidopoulos S, Nightingale P, Sandoo A, Karagiannis A, Douglas K, Sachinidis A, Garyfallos A, Kitas G (2020) Subclinical atherosclerosis in systemic sclerosis and rheumatoid arthritis: a comparative matched-cohort study. Rheumatol Int 40(12):1997–2004. https://doi.org/10.1007/s00296-020-04677-3
doi: 10.1007/s00296-020-04677-3
pubmed: 32772133
Etehad Tavakol M, Fatemi A, Karbalaie A, Emrani Z, Erlandsson BE (2015) Nailfold capillaroscopy in rheumatic diseases: which parameters should be evaluated? Biomed Res Int 2015:974530. https://doi.org/10.1155/2015/974530
doi: 10.1155/2015/974530
pubmed: 26421308
pmcid: 4569783
Bernardino V, Rodrigues A, Lladó A, Panarra A (2020) Nailfold capillaroscopy and autoimmune connective tissue diseases in patients from a Portuguese nailfold capillaroscopy clinic. Rheumatol Int 40(2):295–301. https://doi.org/10.1007/s00296-019-04427-0
doi: 10.1007/s00296-019-04427-0
pubmed: 31451935
van den Hoogen F, Khanna D, Fransen J et al (2013) 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 72(11):1747–1755. https://doi.org/10.1136/annrheumdis-2013-204424
doi: 10.1136/annrheumdis-2013-204424
pubmed: 24092682
Maricq HR, LeRoy EC (1973) Patterns of finger capillary abnormalities in connective tissue disease by “wide-field” microscopy. Arthritis Rheum 16(5):619–628. https://doi.org/10.1002/art.1780160506
doi: 10.1002/art.1780160506
pubmed: 4742842
Soulaidopoulos S, Triantafyllidou E, Garyfallos A, Kitas GD, Dimitroulas T (2017) The role of nailfold capillaroscopy in the assessment of internal organ involvement in systemic sclerosis: a critical review. Autoimmun Rev 16(8):787–795. https://doi.org/10.1016/j.autrev.2017.05.019
doi: 10.1016/j.autrev.2017.05.019
pubmed: 28576600
Rollando D, Bezante GP, Sulli A, Balbi M, Panico N, Pizzorni C, Negrini S, Brunelli C, Barsotti A, Cutolo M, Indiveri F, Ghio M (2010) Brachial artery endothelial-dependent flow-mediated dilation identifies early-stage endothelial dysfunction in systemic sclerosis and correlates with nailfold microvascular impairment. J Rheumatol 37(6):1168–1173. https://doi.org/10.3899/jrheum.091116
doi: 10.3899/jrheum.091116
pubmed: 20436078
Jung KH, Lim MJ, Kwon SR, Kim D, Joo K, Park W (2015) Nailfold capillary microscopic changes and arterial stiffness in Korean systemic sclerosis patients. Mod Rheumatol 25(2):328–331. https://doi.org/10.3109/14397595.2014.881955
doi: 10.3109/14397595.2014.881955
pubmed: 25736474
Soulaidopoulos S, Pagkopoulou E, Katsiki N, Triantafyllidou E, Karagiannis A, Garyfallos A, Kitas GD, Dimitroulas T (2019) Arterial stiffness correlates with progressive nailfold capillary microscopic changes in systemic sclerosis: results from a cross-sectional study. Arthritis Res Ther 21(1):253. https://doi.org/10.1186/s13075-019-2051-3
doi: 10.1186/s13075-019-2051-3
pubmed: 31775852
pmcid: 6882164
Colaci M, Dal Bosco Y, Schinocca C, Ronsivalle G, Guggino G, De Andres I, Russo AA, Sambataro D, Sambataro G, Malatino L (2020) Aortic root dilation in associated with the reduction in capillary density observed at nailfold capillaroscopy in SSc patients. Clin Rheumatol. https://doi.org/10.1007/s10067-020-05201-5
doi: 10.1007/s10067-020-05201-5
pubmed: 32852623
pmcid: 7450255
D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753. https://doi.org/10.1161/circulationaha.107.699579
doi: 10.1161/circulationaha.107.699579
pubmed: 18212285
Hippisley-Cox J, Coupland C, Brindle P (2017) Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357:j2099. https://doi.org/10.1136/bmj.j2099
doi: 10.1136/bmj.j2099
pubmed: 28536104
pmcid: 5441081
Goff DC Jr, Lloyd-Jones DM, Bennett G et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129(25 Suppl 2):S49-73. https://doi.org/10.1161/01.cir.0000437741.48606.98
doi: 10.1161/01.cir.0000437741.48606.98
pubmed: 24222018
Williams B, Mancia G, Spiering W et al (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 36(10):1953–2041. https://doi.org/10.1097/hjh.0000000000001940
doi: 10.1097/hjh.0000000000001940
pubmed: 30234752
Frech TM, Penrod J, Battistone MJ, Sawitzke AD, Stults BM (2012) The prevalence and clinical correlates of an auscultatory gap in systemic sclerosis patients. Int J Rheumatol 2012:590845. https://doi.org/10.1155/2012/590845
doi: 10.1155/2012/590845
pubmed: 22518163
pmcid: 3303564
Saito K, Hishiki Y, Takahashi H (2020) Validation of the Omron HBP-1320 for professional use according to the ANSI/AAMI/ISO 81060–2: 2013 protocol and the 2010 revision of the European Society of Hypertension International Protocol. Blood Press Monit 25(3):162–166. https://doi.org/10.1097/mbp.0000000000000437
doi: 10.1097/mbp.0000000000000437
pubmed: 32118675
Cutolo M, Sulli A, Smith V (2010) Assessing microvascular changes in systemic sclerosis diagnosis and management. Nat Rev Rheumatol 6(10):578–587. https://doi.org/10.1038/nrrheum.2010.104
doi: 10.1038/nrrheum.2010.104
pubmed: 20703220
Cutolo M, Sulli A, Pizzorni C, Accardo S (2000) Nailfold videocapillaroscopy assessment of microvascular damage in systemic sclerosis. J Rheumatol 27(1):155–160
pubmed: 10648032
Smith V, Vanhaecke A, Herrick AL et al (2019) Fast track algorithm: how to differentiate a “scleroderma pattern” from a “non-scleroderma pattern.” Autoimmun Rev 18(11):102394. https://doi.org/10.1016/j.autrev.2019.102394
doi: 10.1016/j.autrev.2019.102394
pubmed: 31520797
Caramaschi P, Canestrini S, Martinelli N, Volpe A, Pieropan S, Ferrari M, Bambara LM, Carletto A, Biasi D (2007) Scleroderma patients nailfold videocapillaroscopic patterns are associated with disease subset and disease severity. Rheumatology (Oxford) 46(10):1566–1569. https://doi.org/10.1093/rheumatology/kem190
doi: 10.1093/rheumatology/kem190
Hofstee HM, Serné EH, Roberts C, Hesselstrand R, Scheja A, Moore TL, Wildt M, Manning JB, Vonk Noordegraaf A, Voskuyl AE, Herrick AL (2012) A multicentre study on the reliability of qualitative and quantitative nail-fold videocapillaroscopy assessment. Rheumatology (Oxford) 51(4):749–755. https://doi.org/10.1093/rheumatology/ker403
doi: 10.1093/rheumatology/ker403
Roman MJ, Naqvi TZ, Gardin JM, Gerhard-Herman M, Jaff M, Mohler E (2006) Clinical application of noninvasive vascular ultrasound in cardiovascular risk stratification: a report from the American Society of Echocardiography and the Society of Vascular Medicine and Biology. J Am Soc Echocardiogr 19(8):943–954. https://doi.org/10.1016/j.echo.2006.04.020
doi: 10.1016/j.echo.2006.04.020
pubmed: 16880089
DeLoach SS, Townsend RR (2008) Vascular stiffness: its measurement and significance for epidemiologic and outcome studies. Clin J Am Soc Nephrol 3(1):184–192. https://doi.org/10.2215/cjn.03340807
doi: 10.2215/cjn.03340807
pubmed: 18178784
Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, Heffernan KS, Lakatta EG, McEniery CM, Mitchell GF, Najjar SS, Nichols WW, Urbina EM, Weber T (2015) Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension 66(3):698–722. https://doi.org/10.1161/hyp.0000000000000033
doi: 10.1161/hyp.0000000000000033
pubmed: 26160955
Dimitroulas T, Giannakoulas G, Karvounis H, Garyfallos A, Settas L, Kitas GD (2014) Micro- and macrovascular treatment targets in scleroderma heart disease. Curr Pharm Des 20(4):536–544. https://doi.org/10.2174/13816128113199990555
doi: 10.2174/13816128113199990555
pubmed: 23565639
Kavian N, Batteux F (2015) Macro- and microvascular disease in systemic sclerosis. Vascul Pharmacol 71:16–23. https://doi.org/10.1016/j.vph.2015.05.015
doi: 10.1016/j.vph.2015.05.015
pubmed: 26044180
Zanatta E, Famoso G, Boscain F, Montisci R, Pigatto E, Polito P, Schiavon F, Iliceto S, Cozzi F, Doria A, Tona F (2019) Nailfold avascular score and coronary microvascular dysfunction in systemic sclerosis: a newsworthy association. Autoimmun Rev 18(2):177–183. https://doi.org/10.1016/j.autrev.2018.09.002
doi: 10.1016/j.autrev.2018.09.002
pubmed: 30572139
Rosato E, Gigante A, Barbano B, Cianci R, Molinaro I, Pisarri S, Salsano F (2011) In systemic sclerosis macrovascular damage of hands digital arteries correlates with microvascular damage. Microvasc Res 82(3):410–415. https://doi.org/10.1016/j.mvr.2011.07.009
doi: 10.1016/j.mvr.2011.07.009
pubmed: 21816163
Ruaro B, Sulli A, Alessandri E, Pizzorni C, Ferrari G, Cutolo M (2014) Laser speckle contrast analysis: a new method to evaluate peripheral blood perfusion in systemic sclerosis patients. Ann Rheum Dis 73(6):1181–1185. https://doi.org/10.1136/annrheumdis-2013-203514
doi: 10.1136/annrheumdis-2013-203514
pubmed: 23956248
Bartoloni E, Pucci G, Cannarile F, Battista F, Alunno A, Giuliani M, Cafaro G, Gerli R, Schillaci G (2016) Central hemodynamics and arterial stiffness in systemic sclerosis. Hypertension 68(6):1504–1511. https://doi.org/10.1161/hypertensionaha.116.08345
doi: 10.1161/hypertensionaha.116.08345
pubmed: 27754865
Cypiene A, Laucevicius A, Venalis A, Dadoniene J, Ryliskyte L, Petrulioniene Z, Kovaite M, Gintautas J (2008) The impact of systemic sclerosis on arterial wall stiffness parameters and endothelial function. Clin Rheumatol 27(12):1517–1522. https://doi.org/10.1007/s10067-008-0958-1
doi: 10.1007/s10067-008-0958-1
pubmed: 18654732
Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C, Aggiusti C, Bertacchini F, Stassaldi D, Gavazzi A, Porteri E, De Ciuceis C, Agabiti-Rosei E (2013) Pulsatile hemodynamics and microcirculation: evidence for a close relationship in hypertensive patients. Hypertension 61(1):130–136. https://doi.org/10.1161/hypertensionaha.111.00006
doi: 10.1161/hypertensionaha.111.00006
pubmed: 23150518
van Sloten TT, Czernichow S, Houben AJ et al (2015) Association between arterial stiffness and skin microvascular function: the SUVIMAX2 Study and The Maastricht Study. Am J Hypertens 28(7):868–876. https://doi.org/10.1093/ajh/hpu246
doi: 10.1093/ajh/hpu246
pubmed: 25523296
Schoina M, Loutradis C, Theodorakopoulou M, Dimitroulas T, Triantafillidou E, Doumas M, Karagiannis A, Garyfallos A, Papagianni A, Sarafidis P (2021) The presence of diabetes mellitus further impairs structural and functional capillary density in patients with chronic kidney disease. Microcirculation 28(2):e12665. https://doi.org/10.1111/micc.12665
doi: 10.1111/micc.12665
pubmed: 33064902
Dalbeni A, Ciccarese C, Bevilacqua M et al (2018) Effects of antiangiogenetic drugs on microcirculation and macrocirculation in patients with advanced-stage renal cancer. Cancers (Basel) 11(1):30. https://doi.org/10.3390/cancers11010030
doi: 10.3390/cancers11010030
Arvanitaki A, Giannakoulas G, Triantafyllidou E, Feloukidis C, Boutou AK, Garyfallos A, Karvounis H, Dimitroulas T (2021) Peripheral microangiopathy in precapillary pulmonary hypertension: a nailfold video capillaroscopy prospective study. Respir Res 22(1):27. https://doi.org/10.1186/s12931-021-01622-1
doi: 10.1186/s12931-021-01622-1
pubmed: 33478514
pmcid: 7819216
Arvanitaki A, Giannakoulas G, Triantafyllidou E, Karvounis H, Dimitroulas T (2020) Peripheral microangiopathy in patients with precapillary pulmonary hypertension: correlation with cardiac function and patients’ functional capacity. Study Design and Rationale. Mediterr J Rheumatol 31(3):369–373. https://doi.org/10.31138/mjr.31.3.369
doi: 10.31138/mjr.31.3.369
pubmed: 33163874
pmcid: 7641020
Lisco G, Cicco G, Cignarelli A, Garruti G, Laviola L, Giorgino F (2018) Computerized video-capillaroscopy alteration related to diabetes mellitus and its complications. Adv Exp Med Biol 1072:363–368. https://doi.org/10.1007/978-3-319-91287-5_58
doi: 10.1007/978-3-319-91287-5_58
pubmed: 30178372
Lambova S, Müller-Ladner U (2013) Capillaroscopic pattern in paraneoplastic Raynaud’s phenomenon. Rheumatol Int 33(6):1597–1599. https://doi.org/10.1007/s00296-010-1715-8
doi: 10.1007/s00296-010-1715-8
pubmed: 21253740
Wibetoe G, Sexton J, Ikdahl E et al (2020) Prediction of cardiovascular events in rheumatoid arthritis using risk age calculations: evaluation of concordance across risk age models. Arthritis Res Ther 22(1):90. https://doi.org/10.1186/s13075-020-02178-z
doi: 10.1186/s13075-020-02178-z
pubmed: 32326974
pmcid: 7178602
Ozen G, Inanc N, Unal AU, Korkmaz F, Sunbul M, Ozmen M, Akar S, Deniz R, Donmez S, Pamuk ON, Atagunduz P, Tigen K, Direskeneli H (2016) Subclinical atherosclerosis in systemic sclerosis: not less frequent than rheumatoid arthritis and not detected with cardiovascular risk indices. Arthritis Care Res (Hoboken) 68(10):1538–1546. https://doi.org/10.1002/acr.22852
doi: 10.1002/acr.22852
Smith V, Herrick AL, Ingegnoli F et al (2020) Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud’s phenomenon and systemic sclerosis. Autoimmun Rev 19(3):102458. https://doi.org/10.1016/j.autrev.2020.102458
doi: 10.1016/j.autrev.2020.102458
pubmed: 31927087