Mitochondrial genome of Geomydoecus aurei, a pocket-gopher louse.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2021
Historique:
received: 19 03 2021
accepted: 18 06 2021
entrez: 27 7 2021
pubmed: 28 7 2021
medline: 10 11 2021
Statut: epublish

Résumé

Parasitic lice demonstrate an unusual array of mitochondrial genome architectures and gene arrangements. We characterized the mitochondrial genome of Geomydoecus aurei, a chewing louse (Phthiraptera: Trichodectidae) found on pocket gophers (Rodentia: Geomyidae) using reads from both Illumina and Oxford Nanopore sequencing coupled with PCR, cloning, and Sanger sequencing to verify structure and arrangement for each chromosome. The genome consisted of 12 circular mitochondrial chromosomes ranging in size from 1,318 to 2,088 nucleotides (nt). Total genome size was 19,015 nt. All 37 genes typical of metazoans (2 rRNA genes, 22 tRNA genes, and 13 protein-coding genes) were present. An average of 26% of each chromosome was composed of non-gene sequences. Within the non-gene region of each chromosome, there was a 79-nt nucleotide sequence that was identical among chromosomes and a conserved sequence with secondary structure that was always followed by a poly-T region. We hypothesize that these regions may be important in the initiation of transcription and DNA replication, respectively. The G. aurei genome shares 8 derived gene clusters with other chewing lice of mammals, but in G. aurei, genes on several chromosomes are not contiguous.

Identifiants

pubmed: 34314423
doi: 10.1371/journal.pone.0254138
pii: PONE-D-21-09156
pmc: PMC8315533
doi:

Substances chimiques

RNA, Ribosomal 0
RNA, Transfer 9014-25-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0254138

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Curr Genet. 1995 Apr;27(5):409-16
pubmed: 7586026
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10
pubmed: 27137889
G3 (Bethesda). 2021 Feb 9;11(2):
pubmed: 33604673
Science. 1994 Aug 19;265(5175):1087-90
pubmed: 8066445
J Parasitol. 2012 Apr;98(2):262-70
pubmed: 22010942
Genome Biol Evol. 2012;4(11):1088-101
pubmed: 23042553
Sci Rep. 2015 Nov 30;5:17389
pubmed: 26617060
Physiol Rev. 1988 Jan;68(1):177-231
pubmed: 2892214
Nucleic Acids Res. 2004 Jan 02;32(1):11-6
pubmed: 14704338
BMC Genomics. 2014 Sep 02;15:751
pubmed: 25179395
J Parasitol. 2018 Feb;104(1):89-95
pubmed: 28985160
Nucleic Acids Res. 2015 Jul 1;43(W1):W493-7
pubmed: 25977293
Parasit Vectors. 2014 Mar 31;7:144
pubmed: 24690192
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Cell. 1982 Apr;28(4):693-705
pubmed: 6178513
PeerJ. 2020 Mar 23;8:e8759
pubmed: 32231878
Nature. 1981 Apr 9;290(5806):470-4
pubmed: 7219536
BMC Genomics. 2014 Jan 18;15:44
pubmed: 24438034
BMC Genomics. 2015 Sep 03;16:661
pubmed: 26335315
Nucleic Acids Res. 2019 Nov 18;47(20):10543-10552
pubmed: 31584075
Gene. 2009 Sep 15;445(1-2):49-57
pubmed: 19540318
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73
pubmed: 20566863
Mol Phylogenet Evol. 2013 Nov;69(2):313-9
pubmed: 22982435
Integr Comp Biol. 2007 Nov;47(5):734-43
pubmed: 21669754
Parasit Vectors. 2020 Oct 6;13(1):506
pubmed: 33023651
Mol Ecol. 2019 Feb;28(4):703-720
pubmed: 30589151
BMC Bioinformatics. 2010 Sep 27;11:485
pubmed: 20875133
Ecol Evol. 2019 Jun 14;9(13):7410-7424
pubmed: 31346412
Genome Biol Evol. 2017 Feb 1;9(2):431-445
pubmed: 28164215
Genome Res. 2009 May;19(5):904-12
pubmed: 19336451
Nucleic Acids Res. 1999 Apr 15;27(8):1767-80
pubmed: 10101183
Mol Phylogenet Evol. 2007 Dec;45(3):997-1013
pubmed: 17964189
Genome Res. 2017 May;27(5):722-736
pubmed: 28298431
Genetics. 1983 Feb;103(2):287-312
pubmed: 6299878
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
BMC Genomics. 2011 Aug 04;12:394
pubmed: 21813020
PLoS One. 2016 Sep 02;11(9):e0162248
pubmed: 27589589
Syst Biol. 2019 May 1;68(3):430-440
pubmed: 30239978
J Mol Evol. 2007 Nov;65(5):589-604
pubmed: 17925995
Genetics. 2005 Dec;171(4):1695-705
pubmed: 16118189
Genome Biol Evol. 2013;5(7):1298-308
pubmed: 23781098

Auteurs

Theresa A Spradling (TA)

Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America.

Alexandra C Place (AC)

Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America.

Ashley L Campbell (AL)

Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America.

James W Demastes (JW)

Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH