Rapid and stable mobilization of CD8
Antibodies, Neutralizing
/ immunology
Antibodies, Viral
/ immunology
B-Lymphocytes
/ immunology
BNT162 Vaccine
CD4-Positive T-Lymphocytes
/ immunology
CD8-Positive T-Lymphocytes
/ cytology
COVID-19
/ immunology
COVID-19 Vaccines
/ immunology
Cells, Cultured
Epitopes, T-Lymphocyte
/ immunology
Humans
Immunization, Secondary
Immunologic Memory
/ immunology
SARS-CoV-2
/ chemistry
Spike Glycoprotein, Coronavirus
/ chemistry
Time Factors
Vaccination
Vaccines, Synthetic
/ immunology
mRNA Vaccines
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
07
05
2021
accepted:
20
07
2021
pubmed:
29
7
2021
medline:
15
9
2021
entrez:
28
7
2021
Statut:
ppublish
Résumé
SARS-CoV-2 spike mRNA vaccines
Identifiants
pubmed: 34320609
doi: 10.1038/s41586-021-03841-4
pii: 10.1038/s41586-021-03841-4
pmc: PMC8426185
doi:
Substances chimiques
Antibodies, Neutralizing
0
Antibodies, Viral
0
COVID-19 Vaccines
0
Epitopes, T-Lymphocyte
0
Spike Glycoprotein, Coronavirus
0
Vaccines, Synthetic
0
spike protein, SARS-CoV-2
0
BNT162 Vaccine
N38TVC63NU
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
268-273Informations de copyright
© 2021. The Author(s).
Références
Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020).
doi: 10.1038/s41586-020-2798-3
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
doi: 10.1056/NEJMoa2035389
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
doi: 10.1056/NEJMoa2034577
Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and T
doi: 10.1038/s41586-020-2814-7
Sahin, U. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 595, 572–577 (2021).
doi: 10.1038/s41586-021-03653-6
Skelly, D. T. et al. Vaccine-induced immunity provides more robust heterotypic immunity than natural infection to emerging SARS-CoV-2 variants of concern. Preprint at https://doi.org/10.21203/rs.3.rs-226857/v1 (2021).
Kalimuddin, S. et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med (N Y) 2, 682–688 (2021).
Painter, M. M. et al. Rapid induction of antigen-specific CD4
Widge, A. T. et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N. Engl. J. Med. 384, 80–82 (2021).
doi: 10.1056/NEJMc2032195
Collier, D. A. et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593, 136–141 (2021).
doi: 10.1038/s41586-021-03412-7
Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616–622 (2021).
doi: 10.1038/s41586-021-03324-6
Goel, R. R. et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci. Immunol. 6, eabi6950 (2021).
doi: 10.1126/sciimmunol.abi6950
Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8
doi: 10.1016/j.immuni.2007.07.010
Boudousquié, C. et al. Differences in the transduction of canonical Wnt signals demarcate effector and memory CD8 T cells with distinct recall proliferation capacity. J. Immunol. 193, 2784–2791 (2014).
doi: 10.4049/jimmunol.1400465
Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature https://doi.org/10.1038/s41586-021-03738-2 (2021).
Ellebedy, A. H. et al. Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nat. Immunol. 17, 1226–1234 (2016).
doi: 10.1038/ni.3533
Lederer, K. et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity 53, 1281–1295 (2020).
doi: 10.1016/j.immuni.2020.11.009
Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).
doi: 10.1038/nature24633
Kaech, S. M. & Ahmed, R. Memory CD8
doi: 10.1038/87720
Romero, P. et al. Four functionally distinct populations of human effector-memory CD8
doi: 10.4049/jimmunol.178.7.4112
Schulien, I. et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8
doi: 10.1038/s41591-020-01143-2
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011
doi: 10.1038/msb.2011.75
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48 (W1), W449–W454 (2020).
doi: 10.1093/nar/gkaa379
Wieland, D. et al. TCF1
doi: 10.1038/ncomms15050
Alanio, C., Lemaitre, F., Law, H. K., Hasan, M. & Albert, M. L. Enumeration of human antigen-specific naive CD8
doi: 10.1182/blood-2009-10-251124