Changes in organic matter composition caused by EDTA washing of two soils contaminated with toxic metals.
EDTA
Fulvic acids
Humic acids
Humic substances
Potentially toxic metals
Soil organic matter
Soil washing
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
received:
07
04
2021
accepted:
08
07
2021
pubmed:
30
7
2021
medline:
15
12
2021
entrez:
29
7
2021
Statut:
ppublish
Résumé
Two soils contaminated with potentially toxic metals (PTMs) contrasting in pH and mineralogy were remediated with CaEDTA, and changes in soil organic matter (SOM) composition were investigated. Previous studies showed no significant loss of SOM from CaEDTA-treated soils, but the results of our study reflected significant decreases (from 46 to 49%) in the free fraction of humic acids (HAs). Remediation affected the composition of the free HA fraction via disturbance of intermolecular bonds - an increase in phenolic and aromatic groups with a simultaneous decrease in carbohydrates - which was confirmed by FTIR spectroscopy in both soils. Because non-radical molecules such as carbohydrates were selectively removed, the concentration of free radicals in the free HA fraction increased in acidic soil. The bound fraction of HAs and fulvic acids (FAs) in SOM, which are important due to their stability and the permanent effects they have on the soil's physical properties, remained unchanged in both remediated soils. The effect of soil recultivation was observed only in the excitation emission matrix (EEM) fluorescence spectra of HAs. In terms of SOM, CaEDTA soil washing can be considered moderately conservative; however, the restoration of free humic fractions is likely to be a long-term process.
Identifiants
pubmed: 34322798
doi: 10.1007/s11356-021-15406-z
pii: 10.1007/s11356-021-15406-z
pmc: PMC8636399
doi:
Substances chimiques
Humic Substances
0
Soil
0
Soil Pollutants
0
Edetic Acid
9G34HU7RV0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
65687-65699Subventions
Organisme : Slovenian Research Agency
ID : Grants J4-3609 and Z1-4272
Informations de copyright
© 2021. The Author(s).
Références
Antízar-Ladislao B, Lopez-Real J, Beck AJ (2006) Investigation of organic matter dynamics during in-vessel composting of an aged coal-tar contaminated soil using fluorescence excitation-emission spectroscopy. Chemosphere 64:839–847. https://doi.org/10.1016/j.chemosphere.2005.10.036
doi: 10.1016/j.chemosphere.2005.10.036
Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manage 198:132–143. https://doi.org/10.1016/J.JENVMAN.2017.04.060
doi: 10.1016/J.JENVMAN.2017.04.060
Austrian Standards Institute A (2013) Austrian Standards Institute. ÖNORM L 1076 2013–-03-15, Grundlagen zur Bodenfunktionsbewertung/Principles Soil Funct Eval
Bachmann J, Guggenberger G, Baumgartl T, Ellerbrock RH, Urbanek E, Goebel MO, Kaiser K, Horn R, Fischer WR (2008) Physical carbon-sequestration mechanisms under special consideration of soil wettability. J Plant Nutr Soil Sci 171:14–26
doi: 10.1002/jpln.200700054
Begum ZA, Rahman IMM, Hasegawa H (2013) Management of EDTA-containing aqueous effluent: environmental concerns and remedies. In: Molnar A (ed) EDTA: synthesis, uses and environmental concerns. Nova Science Publishers, Hauppauge, pp 163–177
Bravo C, Millo C, Covelli S, Contin M, de Nobili M (2020) Terrestrial-marine continuum of sedimentary natural organic matter in a mid-latitude estuarine system. J Soils Sediments 20:1074–1086. https://doi.org/10.1007/s11368-019-02457-6
doi: 10.1007/s11368-019-02457-6
Cesco S, Römheld V, Varanini Z, Pinton R (2000) Solubilization of iron by water-extractable humic substances. J Plant Nutr Soil Sci 163:285–290. https://doi.org/10.1002/1522-2624(200006)163:3<285::AID-JPLN285>3.0.CO;2-Z
doi: 10.1002/1522-2624(200006)163:3<285::AID-JPLN285>3.0.CO;2-Z
Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic substances by E4/E6 ratios. Soil Sci Soc Am J 41:352–358. https://doi.org/10.2136/sssaj1977.03615995004100020037x
doi: 10.2136/sssaj1977.03615995004100020037x
Chen Y, Magen H, Clapp CE (2004) Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. Soil Sci Plant Nutr 50:1089–1095. https://doi.org/10.1080/00380768.2004.10408579
doi: 10.1080/00380768.2004.10408579
Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346. https://doi.org/10.1016/0304-4203(95)00062-3
doi: 10.1016/0304-4203(95)00062-3
Contin M, Miho L, Pellegrini E, Gjoka F, Shkurta E (2019) Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. J Soils Sediment 19(2019):4052–4062. https://doi.org/10.1007/s11368-019-02359-7
doi: 10.1007/s11368-019-02359-7
Das A, Patel SS, Kumar R, Krishna KVSS, Dutta S, Saha MC, Sengupta S, Guha D (2018) Geochemical sources of metal contamination in a coal mining area in Chhattisgarh, India using lead isotopic ratios. Chemosphere 197:152–164. https://doi.org/10.1016/J.CHEMOSPHERE.2018.01.016
doi: 10.1016/J.CHEMOSPHERE.2018.01.016
De Nobili M, Petrussi F (1988) Humification index (HI) as evaluation of the stabilization degree during composting. J Ferment Technol 66:577–583
doi: 10.1016/0385-6380(88)90091-X
De Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–1170. https://doi.org/10.1016/S0038-0717(01)00020-7
doi: 10.1016/S0038-0717(01)00020-7
De Nobili M, Contin M, Mahieu N et al (2008) Assessment of chemical and biochemical stabilization of organic C in soils from the long-term experiments at Rothamsted (UK). Waste Manag 28:723–733. https://doi.org/10.1016/j.wasman.2007.09.025
doi: 10.1016/j.wasman.2007.09.025
De Nobili M, Bravo C, Chen Y (2020) The spontaneous secondary synthesis of soil organic matter components: a critical examination of the soil continuum model theory. Appl. Soil Ecol. 154:103655
doi: 10.1016/j.apsoil.2020.103655
Doumas P, Munoz M, Banni M, Becerra S, Bruneel O, Casiot C, Cleyet-Marel JC, Gardon J, Noack Y, Sappin-Didier V (2018) Polymetallic pollution from abandoned mines in Mediterranean regions: a multidisciplinary approach to environmental risks. Reg. Environ. Chang. 18:677–692
doi: 10.1007/s10113-016-0939-x
Edogbo B, Okolocha E, Maikai B, Aluwong T, Uchendu C (2020) Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State, Nigeria. Sci African 7:e00281. https://doi.org/10.1016/j.sciaf.2020.e00281
doi: 10.1016/j.sciaf.2020.e00281
Enev V, Novak F, Turkeova I, Klucakova M (2015) Humic substances from typical Czech forest soil humic podzol: chemical and spectroscopic characterization. In: 14th International Conference on Environmental Science and Technology. Rhodes, Greece
Gao ZC, Lin YL, Xu B, Xia Y, Hu CY, Zhang TY, Cao TC, Chu WH, Gao NY (2019) Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Res 154:199–209. https://doi.org/10.1016/j.watres.2019.02.004
doi: 10.1016/j.watres.2019.02.004
Giovanela M, Parlanti E, Soriano-Sierra EJ, Soldi MS, Sierra MMD (2004) Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochem J 38:255–264
doi: 10.2343/geochemj.38.255
Gluhar S, Kaurin A, Lestan D (2020) Soil washing with biodegradable chelating agents and EDTA: technological feasibility, remediation efficiency and environmental sustainability. Chemosphere 257:127226. https://doi.org/10.1016/j.chemosphere.2020.127226
doi: 10.1016/j.chemosphere.2020.127226
Goulas A, Bourdat-Deschamps M, Nélieu S, Jimenez J, Patureau D, Haudin CS, Benoit P (2017) Development of a soft extraction method for sulfamethoxazole and transformation products from agricultural soils: effects of organic matter co-extraction on the environmental availability assessment. Sci Total Environ 607–608:1037–1048. https://doi.org/10.1016/J.SCITOTENV.2017.06.192
doi: 10.1016/J.SCITOTENV.2017.06.192
Halim M, Spaccini R, Parlanti E, Amezghal A, Piccolo A (2013) Differences in fluorescence properties between humic acid and its size fractions separated by preparative HPSEC. J Geochemical Explor 129:23–27. https://doi.org/10.1016/j.gexplo.2012.11.006
doi: 10.1016/j.gexplo.2012.11.006
Hartley NR, Tsang DCW, Olds WE, Weber PA (2014) Soil washing enhanced by humic substances and biodegradable chelating agents. Soil Sediment Contam 23:599–613. https://doi.org/10.1080/15320383.2014.852511
doi: 10.1080/15320383.2014.852511
Hayes M, Swift R (2020) Vindication of humic substances as a key component of organic matter in soil and water. Adv Agron 163:1–37. https://doi.org/10.1016/bs.agron.2020.05.001
doi: 10.1016/bs.agron.2020.05.001
Hosseini SS, Lakzian A, Halajnia A, Hammami H (2018) The effect of olive husk extract compared to the edta on Pb availability and some chemical and biological properties in a Pb-contaminated soil. Int J Phytoremediation 20:643–649. https://doi.org/10.1080/15226514.2017.1365352
doi: 10.1080/15226514.2017.1365352
Huang Y, Chen Q, Deng M, Japenga J, Li T, Yang X, He Z (2018) Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J Environ Manage 207:159–168. https://doi.org/10.1016/J.JENVMAN.2017.10.072
doi: 10.1016/J.JENVMAN.2017.10.072
Inbar Y, Chen Y, Hadar Y (1989) Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci Soc Am J 53:1695–1701. https://doi.org/10.2136/sssaj1989.03615995005300060014x
doi: 10.2136/sssaj1989.03615995005300060014x
Jelusic M, Vodnik D, Macek I, Lestan D (2014) Effect of EDTA washing of metal polluted garden soils. Part II: can remediated soil be used as a plant substrate? Sci Total Environ 475:142–152. https://doi.org/10.1016/j.scitotenv.2013.11.111
doi: 10.1016/j.scitotenv.2013.11.111
Jez E, Lestan D (2016) EDTA retention and emissions from remediated soil. Chemosphere 151:202–209. https://doi.org/10.1016/J.CHEMOSPHERE.2016.02.088
doi: 10.1016/J.CHEMOSPHERE.2016.02.088
Kalra YP, Maynard DG (1991) Methods manual for forest soil and plant analysis. Canadian Forest Service, Northern Forestry Centre, Edmonton
Kaurin A, Mihelič R, Kastelec D, Schloter M, Suhadolc M, Grčman H (2015) Consequences of minimum soil tillage on abiotic soil properties and composition of microbial communities in a shallow Cambisol originated from fluvioglacial deposits. Biol Fertil Soils 51:923–933. https://doi.org/10.1007/s00374-015-1037-9
doi: 10.1007/s00374-015-1037-9
Kaurin A, Cernilogar Z, Lestan D (2018) Revitalisation of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost and biochar: effects on soil enzyme activity, microbial community composition and abundance. Chemosphere 193:726–736. https://doi.org/10.1016/J.CHEMOSPHERE.2017.11.082
doi: 10.1016/J.CHEMOSPHERE.2017.11.082
Kaurin A, Gluhar S, Tilikj N, Lestan D (2020) Soil washing with biodegradable chelating agents and EDTA: effect on soil properties and plant growth. Chemosphere 260:127673. https://doi.org/10.1016/j.chemosphere.2020.127673
doi: 10.1016/j.chemosphere.2020.127673
Lestan D (2017) Novel chelant-based washing method for soil contaminated with Pb and other metals: a pilot-scale study. L Degrad Dev 28:2585–2595. https://doi.org/10.1002/ldr.2818
doi: 10.1002/ldr.2818
Liu J, Zhao L, Liu Q, Li J, Qiao Z, Sun P, Yang Y (2021) A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int J Environ Sci Technol:1–24. https://doi.org/10.1007/s13762-021-03144-1
Lu Y, Shan G, Huang J, Li Q (2018) Insights into characteristics of dissolved organic matter fractions in co-composted dairy manure and Chinese herbal residues. Waste and Biomass Valorization 9:777–782. https://doi.org/10.1007/s12649-017-9842-z
doi: 10.1007/s12649-017-9842-z
Magdoff F, Weil RR (2004) Soil organic matter in sustainable agriculture, 1 st. CRC Press
Mahieu N, Olk DC, Randall EW (2002) Multinuclear magnetic resonance analysis of two humic acid fractions from lowland rice soils. J Environ Qual 31:421–430. https://doi.org/10.2134/jeq2002.4210
doi: 10.2134/jeq2002.4210
Manouchehri N, Besancon S, Bermond A (2006) Major and trace metal extraction from soil by EDTA: equilibrium and kinetic studies. Anal Chim Acta 559:105–112. https://doi.org/10.1016/j.aca.2005.11.050
doi: 10.1016/j.aca.2005.11.050
Martin-Neto L, Rosell R, Sposito G (1998) Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma 81:305–311. https://doi.org/10.1016/S0016-7061(97)00089-X
doi: 10.1016/S0016-7061(97)00089-X
Martin-Neto L, Traghetta DG, Vaz CMP, Crestana S, Sposito G (2001) On the interaction mechanisms of atrazine and hydroxyatrazine with humic substances. J Environ Qual 30:520–525. https://doi.org/10.2134/jeq2001.302520x
doi: 10.2134/jeq2001.302520x
McDonald S, Bishop AG, Prenzler PD, Robards K (2004) Analytical chemistry of freshwater humic substances. Anal. Chim. Acta 527:105–124
doi: 10.1016/j.aca.2004.10.011
Official Gazette of Republic of Slovenia S (1996) Uredba o mejnih, opozorilnih in kritičnih imisijskih vrednostih nevarnih snovi v tleh. Ur List RS, št 68/96 41/04 – ZVO-1
Olk DC, Cassman KG, Schmidt-Rohr K, Anders MM, Mao JD, Deenik JL (2006) Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biol Biochem 38:3303–3312. https://doi.org/10.1016/j.soilbio.2006.04.009
doi: 10.1016/j.soilbio.2006.04.009
Olk DC, Bloom PR, Perdue EM, McKnight DM, Chen Y, Farenhorst A, Senesi N, Chin YP, Schmitt-Kopplin P, Hertkorn N, Harir M (2019) Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. J Environ Qual 48:217–232. https://doi.org/10.2134/jeq2019.02.0041
doi: 10.2134/jeq2019.02.0041
Peng W, Li X, Xiao S, Fan W (2018) Review of remediation technologies for sediments contaminated by heavy metals. J Soils Sediments 18:1701–1719. https://doi.org/10.1007/s11368-018-1921-7
doi: 10.1007/s11368-018-1921-7
R Development Core Team (2010) No title. http://www.r-project.org/
Rice JA (2001) Humin. Soil Sci. 166:848–857
doi: 10.1097/00010694-200111000-00009
Rowley MC, Grand S, Verrecchia EP (2018) Calcium-mediated stabilization of soil organic carbon. Biogeochem 137:27–49. https://doi.org/10.1007/s10533-017-0410-1
doi: 10.1007/s10533-017-0410-1
Santos CH, Nicolodelli G, Romano RA et al (2015) Structure of humic substances from some regions of the Amazon assessed coupling 3D fluorescence spectroscopy and CP/PARAFAC. J Braz Chem Soc 26:1136–1142. https://doi.org/10.5935/0103-5053.20150076
doi: 10.5935/0103-5053.20150076
Schnitzer M (1999) A lifetime perspective on the chemistry of soil organic matter. Adv Agron 68:1–58. https://doi.org/10.1016/S0065-2113(08)60842-1
doi: 10.1016/S0065-2113(08)60842-1
Shirshova TL, Ghabbour EA, Davies G (2006) Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma 133:204–216. https://doi.org/10.1016/J.GEODERMA.2005.07.007
doi: 10.1016/J.GEODERMA.2005.07.007
Slepetiene A, Slepetys J, Liaudanskiene I et al (2011) Changes of soil organic carbon and mobile humic acids in response to different agricultural management. J Agric Sci 2:64–70
Sparks DL, Page AL, Helmke PA, et al (1996) Organic matter characterization
Stevenson FJ (1982) Nitrogen in agricultural soils. American Society of Agronomy, Madison
doi: 10.2134/agronmonogr22
Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. John Wiley & Sons
Tadini AM, Hajjoul H, Nicolodelli G et al (2017) Characterization of organic matter in Spodosol Amazonian by fluorescence spectroscopy. Int J Environ Chem Ecol Geol Geophys Eng 11:334–337
Tahiri A, Richel A, Destain J, Druart P, Thonart P, Ongena M (2016) Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions. Anal Bioanal Chem 408:1917–1928. https://doi.org/10.1007/s00216-016-9305-6
doi: 10.1007/s00216-016-9305-6
Tahmasbian I, Safari Sinegani AA, Nguyen TTN, Che R, Phan TD, Hosseini Bai S (2017) Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils. Environ Sci Pollut Res 24:26485–26496. https://doi.org/10.1007/s11356-017-0281-y
doi: 10.1007/s11356-017-0281-y
Theodoratos P, Papassiopi N, Georgoudis T, Kontopoulos A (2000) Selective removal of lead from calcareous polluted soils using the Ca-EDTA salt. Water Air Soil Pollut 122:351–368. https://doi.org/10.1023/a:1005295119231
doi: 10.1023/a:1005295119231
Tsang DCW, Zhang W, Lo IMC (2007) Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere 68:234–243. https://doi.org/10.1016/j.chemosphere.2007.01.022
doi: 10.1016/j.chemosphere.2007.01.022
Varrica D, Dongarrà G, Alaimo MG, Monna F, Losno R, Sanna E, de Giudici G, Tamburo E (2018) Lead isotopic fingerprint in human scalp hair: the case study of Iglesias mining district (Sardinia, Italy). Sci Total Environ 613–614:456–461. https://doi.org/10.1016/J.SCITOTENV.2017.09.106
doi: 10.1016/J.SCITOTENV.2017.09.106
Viventsova E, Kumpiene J, Gunneriusson L, Holmgren A (2005) Changes in soil organic matter composition and quantity with distance to a nickel smelter - a case study on the Kola Peninsula, NW Russia. In: Geoderma. Elsevier, pp 216–226
Vujinović T, Zanin L, Venuti S, Contin M, Ceccon P, Tomasi N, Pinton R, Cesco S, de Nobili M (2020) Biostimulant action of dissolved humic substances from a conventionally and an organically managed soil on nitrate acquisition in maize plants. Front Plant Sci 10:1652. https://doi.org/10.3389/fpls.2019.01652
doi: 10.3389/fpls.2019.01652
Watanabe A, McPhail DB, Maie N et al (2005) Electron spin resonance characteristics of humic acids from a wide range of soil types. Org Geochem 36:981–990. https://doi.org/10.1016/j.orggeochem.2005.03.002
doi: 10.1016/j.orggeochem.2005.03.002
Yip TCM, Tsang DCW, Lo IMC (2010) Interactions of chelating agents with Pb-goethite at the solid–liquid interface: Pb extraction and re-adsorption. Chemosphere 81:415–421. https://doi.org/10.1016/J.CHEMOSPHERE.2010.06.069
doi: 10.1016/J.CHEMOSPHERE.2010.06.069
Zalba P, Amiotti NM, Galantini JA, Pistola S (2016) Soil humic and fulvic acids from different land-use systems evaluated by E4/E6 ratios. Commun Soil Sci Plant Anal 47:1675–1679. https://doi.org/10.1080/00103624.2016.1206558
doi: 10.1080/00103624.2016.1206558
Zeng QR, Sauvé S, Allen HE, Hendershot WH (2005) Recycling EDTA solutions used to remediate metal-polluted soils. Environ Pollut 133:225–231. https://doi.org/10.1016/j.envpol.2004.06.006
doi: 10.1016/j.envpol.2004.06.006
Zhou T, Wu L, Luo Y, Christie P (2018) Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils. Environ Pollut 232:514–522. https://doi.org/10.1016/J.ENVPOL.2017.09.081
doi: 10.1016/J.ENVPOL.2017.09.081
Zimmermann U, Loehmannsroeben H-G, Skrivanek T (1997) Absorption and fluorescence spectroscopic investigations of PAC/humic substance-interactions in water. In: Cecchi G, Lamp T, Reuter R, Weber K (eds) Remote Sensing of Vegetation and Water, and Standardization of Remote Sensing Methods. SPIE, pp 239–249.
Zupanc V, Kastelec D, Lestan D, Grcman H (2014) Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives. Environ Pollut 186:56–62. https://doi.org/10.1016/j.envpol.2013.11.027
doi: 10.1016/j.envpol.2013.11.027