The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy.
Diabetic retinopathy
Immunology
Inflammation
Macrophages
Metabolism
Microglia
Journal
Human cell
ISSN: 1749-0774
Titre abrégé: Hum Cell
Pays: Japan
ID NLM: 8912329
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
30
03
2021
accepted:
17
07
2021
pubmed:
30
7
2021
medline:
27
1
2022
entrez:
29
7
2021
Statut:
ppublish
Résumé
Emergent studies reveal the roles of inflammatory cells and cytokines in the development of diabetic retinopathy (DR), which is gradually portrayed as a chronic inflammatory disease accompanied by metabolic disorder. Through the pathogenesis of DR, macrophages or microglia play a critical role in the inflammation, neovascularization, and neurodegeneration of the retina. Conventionally, macrophages are generally divided into M1 and M2 phenotypes which mainly rely on glycolysis and oxidative phosphorylation, respectively. Recently, studies have found that nutrients (including glucose and lipids) and metabolites (such as lactate), can not only provide energy for cells, but also act as signaling molecules to regulate the function and fate of cells. In this review, we discussed the intrinsic correlations among the metabolic status, polarization, and function of macrophage/microglia in DR. Hyperglycemia and hyperlipidemia could induce M1-like and M2-like macrophages polarization in different phases of DR. Targeting the regulation of microglial metabolic profile might be a promising therapeutic strategy to modulate the polarization and function of macrophages/microglia, thus attenuating the progression of DR.
Identifiants
pubmed: 34324139
doi: 10.1007/s13577-021-00580-6
pii: 10.1007/s13577-021-00580-6
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1617-1628Subventions
Organisme : National Natural Science Foundation of China
ID : 81900891
Organisme : global ophthalmology awards program 2020
ID : 482667
Informations de copyright
© 2021. Japan Human Cell Society.
Références
Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;12:e1221–34.
doi: 10.1016/S2214-109X(17)30393-5
Cheung N, Mitchell P, Wong TY. Diabetic Retinopathy. The Lancet. 2010;9735:124–36.
doi: 10.1016/S0140-6736(09)62124-3
Wong TY, Cheung CM, Larsen M, et al. Diabetic Retinopathy. Nat Rev Dis Primers. 2016;2:16012.
Rubsam A, Parikh S, Fort PE. Role of inflammation in Diabetic Retinopathy. Int J Mol Sci. 2018;19:4.
Altmann C, Schmidt MHH. The Role of Microglia in Diabetic Retinopathy: inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci. 2018;19:1.
Ghosh-Choudhary S, Liu J, Finkel T. Metabolic regulation of cell fate and function. Trends Cell Biol. 2020;3:201–12.
doi: 10.1016/j.tcb.2019.12.005
Shao Y, Chen J, Dong LJ, et al. A protective effect of PPARalpha in endothelial progenitor cells through regulating metabolism. Diabetes. 2019;11:2131–42.
doi: 10.2337/db18-1278
Shao Y, Chen J, Freeman W, et al. Canonical Wnt signaling promotes neovascularization through determination of endothelial progenitor cell fate via metabolic profile regulation. Stem Cells. 2019;10:1331–43.
doi: 10.1002/stem.3049
Haas R, Cucchi D, Smith J, et al. Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem Sci. 2016;5:460–71.
doi: 10.1016/j.tibs.2016.02.003
Buck MD, Sowell RT, Kaech SM, et al. Metabolic Instruction of Immunity. Cell. 2017;4:570–86.
doi: 10.1016/j.cell.2017.04.004
Mosser DM, Edwards JP. Exploring the full spectrum of macrophages activation. Nat Rev Immunol. 2008;12:958–69.
doi: 10.1038/nri2448
Nau GJ, Richmond JF, Schlesinger A, et al. Human macrophages activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A. 2002;3:1503–8.
doi: 10.1073/pnas.022649799
Freemerman AJ, Johnson AR, Sacks GN, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 2014;11:7884–96.
doi: 10.1074/jbc.M113.522037
Haschemi A, Kosma P, Gille L, et al. The sedoheptulose kinase CARKL directs macrophages polarization through control of glucose metabolism. Cell Metab. 2012;6:813–26.
doi: 10.1016/j.cmet.2012.04.023
Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophages polarization. Immunity. 2015;3:419–30.
doi: 10.1016/j.immuni.2015.02.005
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophages activation: time for reassessment. F1000Prime Rep. 2014;6:13.
Mantovani A, Biswas SK, Galdiero MR, et al. Macrophages plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;2:176–85.
doi: 10.1002/path.4133
Doyle AG, Herbein G, Montaner LJ, et al. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol. 1994;6:1441–5.
doi: 10.1002/eji.1830240630
Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophages phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol. 2015;184:436–45.
Huang SC, Everts B, Ivanova Y, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;9:846–55.
doi: 10.1038/ni.2956
Odegaard JI, Chawla A. Alternative macrophages activation and metabolism. Annu Rev Pathol. 2011;6:275–97.
Rodriguez-Prados JC, Traves PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;1:605–14.
doi: 10.4049/jimmunol.0901698
O’neill LA. A broken krebs cycle in macrophages. Immunity. 2015;3:393–4.
doi: 10.1016/j.immuni.2015.02.017
Eid S, Sas KM, Abcouwer SF, et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019;9:1539–49.
doi: 10.1007/s00125-019-4959-1
Hendrick AM, Gibson MV, Kulshreshtha A. Diabetic Retinopathy. Prim Care. 2015;3:451–64.
doi: 10.1016/j.pop.2015.05.005
Torres-Castro I, Arroyo-Camarena UD, Martinez-Reyes CP, et al. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett. 2016;176:81–9.
Pan Y, Wang Y, Cai L, et al. Inhibition of high glucose-induced inflammatory response and macrophages infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol. 2012;3:1169–82.
doi: 10.1111/j.1476-5381.2012.01854.x
Cheng CI, Chen PH, Lin YC, et al. High glucose activates Raw264.7 macrophages through RhoA kinase-mediated signaling pathway. Cell Signal. 2015;2:283–92.
doi: 10.1016/j.cellsig.2014.11.012
Xu X, Qi X, Shao Y, et al. High glucose induced-macrophages activation through TGF-β-activated kinase 1 signaling pathway. Inflamm Res. 2016;8:655–64.
doi: 10.1007/s00011-016-0948-8
Xu X, Fan Z, Qi X, et al. The role of TGF-β-activated kinase 1 in db/db mice and high glucose-induced macrophages. Int Immunopharmacol. 2016;38:120–31.
Al-Rashed F, Sindhu S, Arefanian H, et al. Repetitive intermittent hyperglycemia drives the m1 polarization and inflammatory responses in THP-1 macrophages through the mechanism involving the TLR4-IRF5 pathway. Cells. 2020;9:8.
Grosick R, Alvarado-Vazquez PA, Messersmith AR, et al. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. J Pain Res. 2018;11:1769–78.
Pavlou S, Lindsay J, Ingram R, et al. Sustained high glucose exposure sensitizes macrophages responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunol. 2018;1:24.
doi: 10.1186/s12865-018-0261-0
Fadini GP, Simoni F, Cappellari R, et al. Pro-inflammatory monocyte-macrophages polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis. 2014;2:805–8.
doi: 10.1016/j.atherosclerosis.2014.10.106
Bernelot Moens SJ, Neele AE, Kroon J, et al. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur Heart J. 2017;20:1584–93.
doi: 10.1093/eurheartj/ehx002
Anderson EK, Hill AA, Hasty AH. Stearic acid accumulation in macrophages induces toll-like receptor 4/2-independent inflammation leading to endoplasmic reticulum stress-mediated apoptosis. Arterioscler Thromb Vasc Biol. 2012;7:1687–95.
doi: 10.1161/ATVBAHA.112.250142
Shan B, Wang X, Wu Y, et al. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol. 2017;5:519–29.
doi: 10.1038/ni.3709
Leng J, Chen MH, Zhou ZH, et al. Triterpenoids-enriched extract from the aerial parts of salvia miltiorrhiza regulates macrophages polarization and ameliorates insulin resistance in high-fat fed mice. Phytother Res. 2017;1:100–7.
doi: 10.1002/ptr.5736
Xiong XQ, Geng Z, Zhou B, et al. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophages polarization in obesity Metabolism. 2018;83:31–41.
Cai D, Liu H, Wang J, et al. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging (Albany NY). 2021;8:12160–78.
doi: 10.18632/aging.202929
Ka SO, Song MY, Bae EJ, et al. Myeloid SIRT1 regulates macrophages infiltration and insulin sensitivity in mice fed a high-fat diet. J Endocrinol. 2015;2:109–18.
Hui X, Zhang M, Gu P, et al. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep. 2017;4:645–57.
doi: 10.15252/embr.201643184
Flynn MC, Pernes G, Lee MKS, et al. Monocytes, macrophages, and metabolic disease in atherosclerosis. Front Pharmacol. 2019;10:666.
Bekkering S, Quintin J, Joosten LA, et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;8:1731–8.
doi: 10.1161/ATVBAHA.114.303887
Rios FJ, Koga MM, Ferracini M, et al. Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation. PLoS ONE. 2012;5:e336632.
Rios FJ, Koga MM, Pecenin M, et al. Oxidized LDL induces alternative macrophages phenotype through activation of CD36 and PAFR. Mediators Inflamm. 2013;2013:198193.
Stoger JL, Gijbels MJ, Van Der Velden S, et al. Distribution of macrophages polarization markers in human atherosclerosis. Atherosclerosis. 2012;2:461–8.
doi: 10.1016/j.atherosclerosis.2012.09.013
Cho KY, Miyoshi H, Kuroda S, et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis. 2013;7:910–8.
doi: 10.1016/j.jstrokecerebrovasdis.2012.11.020
Peled M, Fisher EA. Dynamic aspects of macrophages polarization during atherosclerosis progression and regression. Front Immunol. 2014;5:579.
Rahman K, Vengrenyuk Y, Ramsey SA, et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Invest. 2017;8:2904–15.
doi: 10.1172/JCI75005
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of Diabetic Retinopsthy. Diabetes Care. 2012;3:556–64.
doi: 10.2337/dc11-1909
Kowluru RA, Kowluru A, Mishra M, et al. Oxidative stress and epigenetic modifications in the pathogenesis of Diabetic Retinopathy. Prog Retin Eye Res. 2015;48:40–61.
Stefansson E, Olafsdottir OB, Eliasdottir TS, et al. Retinal oximetry: metabolic imaging for diseases of the retina and brain. Prog Retin Eye Res. 2019;70:1–22.
Kusuhara S, Fukushima Y, Ogura S, et al. Pathophysiology of Diabetic Retinopathy: The Old and the New. Diabetes Metab J. 2018;5:364–76.
doi: 10.4093/dmj.2018.0182
Liew G, Lei Z, Tan G, et al. Metabolomics of Diabetic Retinopathy. Curr Diab Rep. 2017;11:102.
doi: 10.1007/s11892-017-0939-3
Chen L, Cheng CY, Choi H, et al. Plasma metabonomic profiling of Diabetic Retinopathy. Diabetes. 2016;4:1099–108.
doi: 10.2337/db15-0661
Haines NR, Manoharan N, Olson JL, et al. Metabolomics analysis of human vitreous in Diabetic Retinopathy and rhegmatogenous retinal detachment. J Proteome Res. 2018;7:2421–7.
doi: 10.1021/acs.jproteome.8b00169
Kumagai AK. Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab Res Rev. 1999;4:261–73.
doi: 10.1002/(SICI)1520-7560(199907/08)15:4<261::AID-DMRR43>3.0.CO;2-Z
Klip A, Marette A, Dimitrakoudis D, et al. Effect of diabetes on glucoregulation. From glucose transporters to glucose metabolism in vivo. Diabetes Care. 1992;11:1747–66.
doi: 10.2337/diacare.15.11.1747
Badr GA, Tang J, Ismail-Beigi F, et al. Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes. 2000;6:1016–21.
doi: 10.2337/diabetes.49.6.1016
Fernandes R, Carvalho AL, Kumagai A, et al. Downregulation of retinal GLUT1 in diabetes by ubiquitinylation. Mol Vis. 2004;10:618–28.
Kumagai AK, Vinores SA, Pardridge WM. Pathological upregulation of inner blood-retinal barrier Glut1 glucose transporter expression in diabetes mellitus. Brain Res. 1996;2:313–7.
doi: 10.1016/0006-8993(95)01335-0
Lu L, Seidel CP, Iwase T, et al. Suppression of GLUT1; a new strategy to prevent diabetic complications. J Cell Physiol. 2013;2:251–7.
doi: 10.1002/jcp.24133
You ZP, Zhang YL, Shi K, et al. Suppression of Diabetic Retinopathy with GLUT1 siRNA. Sci Rep. 2017;1:7437.
doi: 10.1038/s41598-017-07942-x
Yokomizo H, Maeda Y, Park K, et al. Retinol binding protein 3 increased in the retina of patients with diabetes resistant to Diabetic Retinopathy. Sci Transl Med. 2019;11:499.
Ferrington DA, Fisher CR, Kowluru RA. Mitochondrial defects drive degenerative retinal diseases. Trends Mol Med. 2020;1:105–18.
doi: 10.1016/j.molmed.2019.10.008
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;2:158–67.
doi: 10.1016/j.molcel.2012.09.025
Kowluru RA, Kowluru A, Veluthakal R, et al. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of Diabetic Retinopathy. Diabetologia. 2014;5:1047–56.
doi: 10.1007/s00125-014-3194-z
Roy S, Kim D, Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of Diabetic Retinopathy. J Clin Med. 2019;8:9.
Kowluru RA. Mitochondrial stability in Diabetic Retinopathy: lessons learned from epigenetics. Diabetes. 2019;2:241–7.
doi: 10.2337/dbi18-0016
Malik AN, Rosa HS, De Menezes ES, et al. The detection and partial localisation of heteroplasmic mutations in the mitochondrial genome of patients with Diabetic Retinopathy. Int J Mol Sci. 2019;20:24.
Mohammad G, Radhakrishnan R, Kowluru RA. Epigenetic modifications compromise mitochondrial DNA quality control in the development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2019;12:3943–51.
doi: 10.1167/iovs.19-27602
Fumagalli S, Perego C, Pischiutta F, et al. The ischemic environment drives microglia and macrophages function. Front Neurol. 2015:6.
Rajamani U, Jialal I. Hyperglycemia induces toll-like receptor-2 and -4 expression and activity in human microvascular retinal endothelial cells: implications for Diabetic Retinopathy. J Diabetes Res. 2014.
Yao L, Kan EM, Lu J, et al. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation. 2013;10:23.
Butturini E, Boriero D, Carcereri De Prati A, et al. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch Biochem Biophys. 2019;669: 22–30.
Tang J, Kern TS. Inflammation in Diabetic Retinopathy. Prog Retin Eye Res. 2011;5:343–58.
doi: 10.1016/j.preteyeres.2011.05.002
Fadini GP, Cappellari R, Mazzucato M, et al. Monocyte–macrophages polarization balance in pre-diabetic individuals. Acta Diabetol. 2013;6:977–82.
doi: 10.1007/s00592-013-0517-3
Fadini GP, De Kreutzenberg SV, Boscaro E, et al. An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia. 2013;8:1856–66.
doi: 10.1007/s00125-013-2918-9
Arroba AI, Alcalde-Estevez E, Garcia-Ramirez M, et al. Modulation of microglia polarization dynamics during Diabetic Retinopathy in db/db mice. Biochim Biophys Acta. 2016;9:1663–74.
doi: 10.1016/j.bbadis.2016.05.024
Zeng H-Y, Green WR, Tso MOM. Microglial activation in human Diabetic Retinopathy. Arch Ophthalmol. 2008;2:227–32.
doi: 10.1001/archophthalmol.2007.65
Hsieh CF, Liu CK, Lee CT, et al. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep. 2019;1:840.
doi: 10.1038/s41598-018-37215-0
Chen C, Wu S, Hong Z, et al. Chronic hyperglycemia regulates microglia polarization through ERK5. Aging (Albany NY). 2019;2:697–706.
doi: 10.18632/aging.101770
Holland R, Mcintosh AL, Finucane OM, et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav Immun. 2018;68183–196.
Nair S, Sobotka KS, Joshi P, et al. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia. 2019;6:1047–61.
doi: 10.1002/glia.23587
Hu Y, Mai W, Chen L, et al. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia. 2020;5:1031–45.
doi: 10.1002/glia.23760
Mei X, Zhang T, Ouyang H, et al. Scutellarin alleviates blood-retina-barrier oxidative stress injury initiated by activated microglia cells during the development of Diabetic Retinopathy. Biochem Pharmacol. 2019;159:82–95.
Zhang T, Mei X, Ouyang H, et al. Natural flavonoid galangin alleviates microglia-trigged blood-retinal barrier dysfunction during the development of Diabetic Retinopathy. J Nutr Biochem. 2019;65:1–14.
Jo DH, Yun JH, Cho CS, et al. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in Diabetic Retinopathy. Glia. 2019;2:321–31.
doi: 10.1002/glia.23542
Abu El-Asrar AM, Ahmad A, Allegaert E, et al. Interleukin-11 overexpression and M2 macrophages density are associated with angiogenic activity in proliferative Diabetic retinopathy. Ocul Immunol Inflamm. 2019;1–14.
Ding X, Gu R, Zhang M, et al. Microglia enhanced the angiogenesis, migration and proliferation of co-cultured RMECs. BMC Ophthalmol. 2018;1:249.
doi: 10.1186/s12886-018-0886-z
Li L, Heiduschka P, Alex AF, et al. Behaviour of CD11b-positive cells in an animal model of laser-induced choroidal neovascularisation. Ophthalmologica. 2017;1:29–41.
doi: 10.1159/000453550
Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med. 2020;12:555.
Mendonca HR, Carpi-Santos R, Da Costa CK, et al. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: galectin-3 participation. Neural Regen Res. 2020;4:625–35.
Wang L, Pavlou S, Du X, et al. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 2019;1:2.
doi: 10.1186/s13024-019-0305-9
Zhang T, Ouyang H, Mei X, et al. Erianin alleviates DR by reducing retinal inflammation initiated by microglia cells via inhibiting hyperglycemia-mediated ERK1/2-NF-kappaB signaling pathway. 2019;4:fj201802614RRR.
Kong L, Wang Z, Liang X, et al. Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3. J Neuroinflamm. 2019;1:240.
doi: 10.1186/s12974-019-1648-4
Dos-Santos-Pereira M, Guimaraes FS, Del-Bel E, et al. Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-kappaB-dependent signaling and glucose consumption. Glia. 2020;3:561–73.
doi: 10.1002/glia.23738
Li J, Yu S, Lu X, et al. The phase changes of M1/M2 phenotype of microglia/macrophages following oxygen-induced retinopathy in mice. Inflamm Res. 2021;2:183–92.
doi: 10.1007/s00011-020-01427-w
Chen J, Shao Y, Sasore T, et al. Interphotoreceptor retinol-binding protein ameliorates diabetes-induced retinal dysfunction and neurodegeneration through rhodopsin. Diabetes. 2021;3:788–99.
doi: 10.2337/db20-0609