From farm to fork: Colistin voluntary withdrawal in Portuguese farms reflected in decreasing occurrence of mcr-1-carrying Enterobacteriaceae from chicken meat.
Animals
Anti-Bacterial Agents
/ pharmacology
Chickens
Colistin
/ pharmacology
Drug Resistance, Bacterial
/ genetics
Enterobacteriaceae
/ genetics
Escherichia coli Proteins
/ genetics
Farms
Microbial Sensitivity Tests
Multilocus Sequence Typing
Plasmids
/ genetics
Portugal
Poultry
Spectroscopy, Fourier Transform Infrared
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
25
05
2021
accepted:
27
07
2021
pubmed:
31
7
2021
medline:
18
3
2022
entrez:
30
7
2021
Statut:
ppublish
Résumé
Expansion of mcr-carrying Enterobacteriaceae (MCR-E) is a well-recognized problem affecting animals, humans and the environment. Ongoing global control actions involve colistin restrictions among food-animal production, but their impact on poultry-derived products is largely unknown, justifying comprehensive farm-to-fork studies. Occurrence of MCR-E among 53 chicken-meat batches supplied from 29 Portuguese farms shortly after colistin withdrawal was evaluated. Strains (FT-IR/MLST/WGS), mcr plasmids and their adaptive features were characterized by cultural, molecular and genomic approaches. We found high rates of chicken-meat batches (80%-100% - 4 months; 12% - the last month) with multiple MDR + mcr-1-carrying Escherichia coli (Ec-including ST117 and ST648-Cplx) and Klebsiella pneumoniae (Kp-ST147-O5:K35) clones, some of them persisting over time. The mcr-1 was located in the chromosome (Ec-ST297/16-farms) or dispersed IncX4 (Ec-ST602/ST6469/5-farms), IncHI2-ST2/ST4 (Ec-ST533/ST6469/5 farms and Kp-ST147/6-farms) or IncI2 (Ec-ST117/1-farm) plasmids. WGS revealed high load and diversity in virulence, antibiotic resistance and metal tolerance genes. This study supports colistin withdrawal potential efficacy in poultry production and highlights both poultry-production chain as a source of mcr-1 and the risk of foodborne transmission to poultry-meat consumers. Finally, in the antibiotic reduction/replacement context, other potential co-selective pressures (e.g., metals-Cu as feed additives) need to be further understood to guide concerted, effective and durable actions under 'One Health' perspective.
Identifiants
pubmed: 34327794
doi: 10.1111/1462-2920.15689
doi:
Substances chimiques
Anti-Bacterial Agents
0
Escherichia coli Proteins
0
Colistin
Z67X93HJG1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7563-7577Informations de copyright
© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Alba, P., Leekitcharoenphon, P., Franco, A., Feltrin, F., Ianzano, A., Caprioli, A., et al. (2018) Molecular epidemiology of mcr-encoded colistin resistance in Enterobacteriaceae from food-producing animals in Italy revealed through the EU harmonized antimicrobial resistance monitoring. Front Microbiol 9: 1217.
Alikhan, N.F., Petty, N.K., Ben Zakour, N.L., and Beatson, S.A. (2011) BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genom 12: 402.
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data (online). URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Apostolakos, I., and Piccirillo, A. (2018) A review on the current situation and challenges of colistin resistance in poultry production. Avian Pathol 47: 546-558.
Azam, M., Mohsin, M., Johnson, T.J., Smith, E.A., Johnson, A., Umair, M., et al. (2020) Genomic landscape of multi-drug resistant avian pathogenic Escherichia coli recovered from broilers. Vet Microbiol 247: 108766.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455-477.
Bialek-Davenet, S., Criscuolo, A., Ailloud, F., Passet, V., Nicolas-Chanoine, M.-H., Decré, D., and Brisse, S. (2014) Development of a multiplex PCR assay for identification of Klebsiella pneumoniae hypervirulent clones of capsular serotype K2. J Med Microbiol 63: 1608-1614.
Brisse, S., Passet, V., Haugaard, A.B., Babosan, A., Kassis-Chikhani, N., Struve, C., and Decré, D. (2013) wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 51: 4073-4078.
Campos, J., Cristino, L., Peixe, L., and Antunes, P. (2016) MCR-1 in multidrug-resistant and copper-tolerant clinically relevant salmonella 1,4,[5],12:i:- and S. Rissen clones in Portugal, 2011 to 2015. Euro Surveill 21: 1-5.
Campos, J., Sousa, C., Mourão, J., Lopes, J., Antunes, P., and Peixe, L. (2018) Discrimination of non-typhoid Salmonella serogroups and serotypes by Fourier transform infrared spectroscopy: a comprehensive analysis. Int J Food Microbiol 285: 34-41.
Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K.L., and Threlfall, E.J. (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63: 219-228.
Catry, B., Cavaleri, M., Baptiste, K., Grave, K., Grein, K., Holm, A., et al. (2015) Use of colistin-containing products within the European Union and European economic area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents 46: 297-306.
CDC (2017) Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri. PulseNet PFGE Manual. Centers for Disease Control and Prevention, Atlanta.
Chen, K., Chan, E.W.-C., Xie, M., Ye, L., Dong, N., and Chen, S. (2017) Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. Eurosurveillance 22: 17-206.
Clermont, O., Dixit, O.V.A., Vangchhia, B., Condamine, B., Dion, S., Bridier-Nahmias, A., et al. (2019) Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ Microbiol 21: 3107-3117.
CLSI (2018) Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th Edition; CLSI Document M100, Clinical and Laboratory Standards Institute.
De Biase, D., and Pennacchietti, E. (2012) Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol 86: 770-786.
Denamur, E., Clermont, O., Bonacorsi, S., and Gordon, D. (2021) The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol 19: 37-54.
DGS (2019) Direção Geral da Saúde - Plano nacional de combate à resistência aos antimicrobianos 2019-2023. Âmbito do conceito “uma só saúde”.
Duggett, N.A., Randall, L.P., Horton, R.A., Lemma, F., Kirchner, M., Nunez-Garcia, J., et al. (2018) Molecular epidemiology of isolates with multiple mcr plasmids from a pig farm in Great Britain: the effects of colistin withdrawal in the short and long term. J Antimicrob Chemother 73: 3025-3033.
ECDC, EFSA, and EMA. (2017) ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA J, 15: 1-135.
EFSA. (2017) EMA and EFSA joint scientific opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 15: 1-245.
El Garch, F., de Jong, A., Bertrand, X., Hocquet, D., and Sauget, M. (2018) Mcr-1-like detection in commensal Escherichia coli and Salmonella spp. from food-producing animals at slaughter in Europe. Vet Microbiol 213: 42-46.
EMA (2020) European Medicines Agency. Portugal trends - Sales of veterinary antibiotics between 2010-2018. https://www.ema.europa.eu/en/documents/report/portugal-trends-sales-veterinary-antibiotics-between-2010-2018_en.pdf
EMA and CVMP (2019) Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products - Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans. https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/advice-implementing-measures-under-article-374-regulation-eu-2019/6-veterinary-medicinal-products-criteria-designation-antimicrobials-be-reserved-treatment-certain_en.pdf
EMA, CVMP and CHMP (2016) Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. EMA/CVMP/CHMP/231573/2016. https://www.ema.europa.eu/en/documents/scientific-guideline/updated-advice-use-colistin-products-animals-within-european-union-development-resistance-possible_en-0.pdf.
EMA, CVMP and CHMP (2019) Categorisation of antibiotics in the European Union. Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals. https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf
EMA and ESVAC (2020) European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. Sales of veterinary antimicrobial agents in 31 European countries in 2018. https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018-tenth-esvac-report_en.pdf
EUCAST (2016) European Committee of Antimicrobial Susceptibility Testing. Recommendations for MIC determination of colistin (polymyxin E) - As recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group.
EUCAST (2020) Breakpoint tables for interpretation of MICs and zone diameters.
Fournier, C., Aires-de-Sousa, M., Nordmann, P., and Poirel, L. (2020) Occurrence of CTX-M-15- and MCR-1-producing Enterobacterales in pigs in Portugal: evidence of direct links with antibiotic selective pressure. Int J Antimicrob Agents 55: 105802.
Freitas-Silva, J., Inácio, Â.S., Mourão, J., Antunes, P., Mendes, Â., de Carvalho, A.P., et al. (2018) Occurrence of mcr-1 in Escherichia coli from rabbits of intensive farming. Vet Microbiol 227: 78-81.
Galata, V., Fehlmann, T., Backes, C., and Keller, A. (2018) PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res 47: D195-D202.
Gelbíčová, T., Baráková, A., Florianová, M., Jamborová, I., Zelendová, M., Pospíšilová, L., et al. (2019) Dissemination and comparison of genetic determinants of mcr-mediated colistin resistance in Enterobacteriaceae via retailed raw meat products. Front Microbiol 10: 1-10.
Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29: 1072-1075.
Héritier, C., Poirel, L., Aubert, D., and Nordmann, P. (2003) Genetic and functional analysis of the chromosome-encoded carbapenem-hydrolyzing oxacillinase OXA-40 of Acinetobacter baumannii. Antimicrob Agents Chemother 47: 268-273.
Irrgang, A., Roschanski, N., Tenhagen, B.-A., Grobbel, M., Skladnikiewicz-Ziemer, T., Thomas, K., et al. (2016) Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010-2015. PLoS One: 11: 1-10.
Johnson, J.R., and Russo, T.A. (2018) Molecular epidemiology of extraintestinal pathogenic Escherichia coli. EcoSal Plus 8: 1-32.
Johnson, T.J., Bielak, E.M., Fortini, D., Hansen, L.H., Hasman, H., Debroy, C., et al. (2012) Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68: 43-50.
Kieffer, N., Aires-de-Sousa, M., Nordmann, P., and Poirel, L. (2017) High rate of MCR-1-producing Escherichia coli and Klebsiella pneumoniae among pigs. Portugal Emerg Infect Dis 23: 2023-2029.
Lam, M.M.C., Wick, R.R., Wyres, K.L., and Holt, K.E. (2020) Genomic surveillance framework and global population structure for Klebsiella pneumoniae. bioRxiv.1-52.
Lepuschitz, S., Hauser, K., Schriebl, A., Schlagenhaufen, C., Stöger, A., Chakeri, A., et al. (2020) Fecal Klebsiella pneumoniae carriage is intermittent and of high clonal diversity. Front Microbiol 11: 581081.
Li, R., Du, P., Zhang, P., Li, Y., Yang, X., Wang, Z., et al. (2021) Comprehensive genomic investigation of coevolution of mcr genes in Escherichia coli strains via nanopore sequencing. Global Challenges 5: 2000014.
Li, X., Li, L., Yu, L., Liu, S., Liu, L., Wei, X., et al. (2020) Prevalence of avian-origin mcr-1-positive Escherichia coli with a potential risk to humans in Tai'an, China. Poult Sci 99: 5118-5126.
Ling, Z., Yin, W., Shen, Z., Wang, Y., Shen, J., and Walsh, T.R. (2020) Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother, 75: 3087-3095.
Liu, Y.-Y., Wang, Y., Walsh, T.R., Yi, L.-X., Zhang, R., Spencer, J., et al. (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16: 161-168.
Liu, Y.-Y., Zhou, Q., He, W., Lin, Q., Yang, J., and Liu, J.-H. (2020) Mcr-1 and plasmid prevalence in Escherichia coli from livestock. Lancet Infect Dis 20: 1126.
Mageiros, L., Méric, G., Bayliss, S.C., Pensar, J., Pascoe, B., Mourkas, E., et al. (2021) Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun 12: 765.
Majewski, M., Łukomska, A., Wilczyński, J., Wystalska, D., Racewicz, P., Nowacka-Woszuk, J., et al. (2020) Colistin resistance of non-pathogenic strains of Escherichia coli occurring as natural intestinal flora in broiler chickens treated and not treated with colistin sulphate. J Vet Res 64: 399-405.
Martak, D., Valot, B., Sauget, M., Cholley, P., Thouverez, M., Bertrand, X., and Hocquet, D. (2019) Fourier-transform infrared spectroscopy can quickly type gram-negative Bacilli responsible for hospital outbreaks. Front Microbiol 10: 1440.
Mendes, A.C., Novais, Â., Campos, J., Rodrigues, C., Santos, C., Antunes, P., et al. (2018) Mcr-1 in Carbapenemase-producing Klebsiella pneumoniae with hospitalized patients, Portugal, 2016-2017. Emerg Infect Dis 24: 762-766.
Monte, D.F., Mem, A., Fernandes, M.R., Cerdeira, L., Esposito, F., Galvão, J.A., et al. (2017) Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob Agents Chemother 61: 1-4.
Mourão, J., Marçal, S., Ramos, P., Campos, J., Machado, J., Peixe, L., et al. (2016) Tolerance to multiple metal stressors in emerging non-typhoidal MDR Salmonella serotypes: a relevant role for copper in anaerobic conditions. J Antimicrob Chemother 71: 2147-2157.
Mourão, J., Novais, C., Machado, J., Peixe, L., and Antunes, P. (2015) Metal tolerance in emerging clinically relevant multidrug-resistant salmonella enterica serotype 4,[5],12:i:- clones circulating in Europe. Int J Antimicrob Agents 45: 610-616.
Mourão, J., Rebelo, A., Ribeiro, S., Peixe, L., Novais, C., and Antunes, P. (2020a) Atypical non-H2S-producing monophasic Salmonella typhimurium ST3478 strains from chicken meat at processing stage are adapted to diverse stresses. Pathogens 9: 701.
Mourão, J., Rebelo, A., Ribeiro, S., Peixe, L., Novais, C., and Antunes, P. (2020b) Tolerance to arsenic contaminant among multidrug-resistant and copper-tolerant Salmonella successful clones is associated with diverse ars operons and genetic contexts. Environ Microbiol 22: 2829-2842.
Nang, S.C., Morris, F.C., McDonald, M.J., Han, M.L., Wang, J., Strugnell, R.A., et al. (2018) Fitness cost of mcr-1-mediated polymyxin resistance in Klebsiella pneumoniae. J Antimicrob Chemother 73: 1604-1610.
Novais, Â., Freitas, A.R., Rodrigues, C., and Peixe, L. (2019) Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis 38: 427-448.
Novais, Â., Vuotto, C., Pires, J., Montenegro, C., Donelli, G., Coque, T.M., and Peixe, L. (2013) Diversity and biofilm-production ability among isolates of Escherichia coli phylogroup D belonging to ST69, ST393 and ST405 clonal groups. BMC Microbiol 13: 144.
Peirano, G., Chen, L., Kreiswirth, B.N., and Pitout, J.D.D. (2020) Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob Agents Chemother 64: 1-14.
Perdigão, J., Modesto, A., Pereira, A.L., Neto, O., Matos, V., Godinho, A., et al. (2020) Whole-genome sequencing resolves a polyclonal outbreak by extended-spectrum beta-lactam and carbapenem-resistant Klebsiella pneumoniae in a Portuguese tertiary-care hospital. Microb Genom, 7: 1-15.
Perrin-Guyomard, A., Bruneau, M., Houée, P., Deleurme, K., Legrandois, P., Poirier, C., et al. (2016) Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014. Euro Surveill 21: 1-3.
Poirel, L., and Nordmann, P. (2016) Emerging plasmid-encoded colistin resistance: the animal world as the culprit? J Antimicrob Chemother 71: 2326-2327.
Rebelo, A.R., Bortolaia, V., Kjeldgaard, J.S., Pedersen, S.K., Leekitcharoenphon, P., Hansen, I.M., et al. (2018) Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 23: 1-11.
Rodrigues, C., Sousa, C., Lopes, J.A., Novais, Â., and Peixe, L. (2020) A front line on Klebsiella pneumoniae capsular polysaccharide knowledge: fourier transform infrared spectroscopy as an accurate and fast typing tool. mSystems: 5: 1-18.
Savin, M., Bierbaum, G., Blau, K., Parcina, M., Sib, E., Smalla, K., et al. (2020) Colistin-resistant Enterobacteriaceae isolated from process waters and wastewater from German poultry and pig slaughterhouses. Front Microbiol 11: 1-18.
Schrauwen, E.J., Huizinga, P., van Spreuwel, N., Verhulst, C., Kluytmans-van den Bergh, M.F., and Kluytmans, J.A. (2017) High prevalence of the mcr-1 gene in retail chicken meat in The Netherlands in 2015. Antimicrob Resist Infect Control 6: 83.
Seemann, T. (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069.
Seppey, M., Manni, M., and Zdobnov, E.M. (2019) BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 1962: 227-245.
Silva, L., Grosso, F., Rodrigues, C., Ksiezarek, M., Ramos, H., and Peixe, L. (2021) The success of particular Acinetobacter baumannii clones: accumulating resistance and virulence inside a sugary shield. J Antimicrob Chemother 76: 305-311.
Silva, L., Rodrigues, C., Lira, A., Leão, M., Mota, M., Lopes, P., et al. (2020) Fourier transform infrared (FT-IR) spectroscopy typing: a real-time analysis of an outbreak by carbapenem-resistant Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis 39: 2471-2475.
Sousa, C., Novais, Â., Magalhães, A., Lopes, J., and Peixe, L. (2013) Diverse high-risk B2 and D Escherichia coli clones depicted by Fourier transform infrared spectroscopy. Sci Rep 3: 3278.
Sun, J., Zhang, H., Liu, Y.H., and Feng, Y. (2018) Towards understanding MCR-like colistin resistance. Trends Microbiol 26: 794-808.
Tetzschner, M., Maria, A., Johnson, J.R., Johnston, B.D., Lund, O., and Scheutz, F. (2020) In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J Clin Microbiol 58: 1-13.
Trung, N.V., Matamoros, S., Carrique-Mas, J.J., Nghia, N.H., Nhung, N.T., Chieu, T.T.B., et al. (2017) Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms. Vietnam Emerg Infect Dis 23: 529-532.
Vogt, S., Löffler, K., Dinkelacker, A.G., Bader, B., Autenrieth, I.B., Peter, S., and Liese, J. (2019) Fourier-transform infrared (FTIR) spectroscopy for typing of clinical Enterobacter cloacae complex isolates. Front Microbiol 10: 2582.
Wang, R.F., Cao, W.W., and Cerniglia, C.E. (1996) PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 62: 1242-1247.
Wang, Y., Xu, C., Zhang, R., Chen, Y., Shen, Y., Hu, F., et al. (2020) Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis 20: 1161-1171.
Wang, Y., Zhang, R., Li, J., Wu, Z., Yin, W., Schwarz, S., et al. (2017) Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2: 16260.
WHO (2019) World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th revision. Geneva, Switzerland: World Health Organization.
Xiaomin, S., Yiming, L., Yuying, Y., Zhangqi, S., Yongning, W., and Shaolin, W. (2020) Global impact of mcr-1-positive Enterobacteriaceae bacteria on "one health". Crit Rev Microbiol 46: 565-577.
Yang, Q., Li, M., Spiller, O.B., Andrey, D.O., Hinchliffe, P., Li, H., et al. (2017) Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun 8: 2054.
Zając, M., Sztromwasser, P., Bortolaia, V., Leekitcharoenphon, P., Cavaco, L.M., Ziȩtek-Barszcz, A., et al. (2019) Corrigendum: occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011-2016. Front Microbiol 10: 2816.
Zhang, J., Chen, L., Wang, J., Yassin, A.K., Butaye, P., Kelly, P., et al. (2018) Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci Rep 8: 3705.
Zhuge, X., Jiang, M., Tang, F., Sun, Y., Ji, Y., Xue, F., et al. (2019) Avian-source mcr-1-positive Escherichia coli is phylogenetically diverse and shares virulence characteristics with E. coli causing human extra-intestinal infections. Vet Microbiol 239: 108483.
Zurfluh, K., Buess, S., Stephan, R., and Nüesch-Inderbinen, M. (2016) Assessment of the occurrence of MCR producing Enterobacteriaceae in Swiss and imported poultry meat. SDRP J Food Sci Technol 1: 1-6.