Combining conventional QTL analysis and whole-exome capture-based bulk-segregant analysis provides new genetic insights into tuber sprout elongation and dormancy release in a diploid potato population.


Journal

Heredity
ISSN: 1365-2540
Titre abrégé: Heredity (Edinb)
Pays: England
ID NLM: 0373007

Informations de publication

Date de publication:
09 2021
Historique:
received: 11 02 2021
accepted: 07 07 2021
revised: 05 07 2021
pubmed: 1 8 2021
medline: 3 11 2021
entrez: 31 7 2021
Statut: ppublish

Résumé

Tuber dormancy and sprouting are commercially important potato traits as long-term tuber storage is necessary to ensure year-round availability. Premature dormancy release and sprout growth in tubers during storage can result in a significant deterioration in product quality. In addition, the main chemical sprout suppressant chlorpropham has been withdrawn in Europe, necessitating alternative approaches for controlling sprouting. Breeding potato cultivars with longer dormancy and slower sprout growth is a desirable goal, although this must be tempered by the needs of the seed potato industry, where dormancy break and sprout vigour are required for rapid emergence. We have performed a detailed genetic analysis of tuber sprout growth using a diploid potato population derived from two highly heterozygous parents. A dual approach employing conventional QTL analysis allied to a combined bulk-segregant analysis (BSA) using a novel potato whole-exome capture (WEC) platform was evaluated. Tubers were assessed for sprout growth in storage at six time-points over two consecutive growing seasons. Genetic analysis revealed the presence of main QTL on five chromosomes, several of which were consistent across two growing seasons. In addition, phenotypic bulks displaying extreme sprout growth phenotypes were subjected to WEC sequencing for performing BSA. The combined BSA and WEC approach corroborated QTL locations and served to narrow the associated genomic regions, while also identifying new QTL for further investigation. Overall, our findings reveal a very complex genetic architecture for tuber sprouting and sprout growth, which has implications both for potato and other root, bulb and tuber crops where long-term storage is essential.

Identifiants

pubmed: 34331028
doi: 10.1038/s41437-021-00459-0
pii: 10.1038/s41437-021-00459-0
pmc: PMC8405706
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

253-265

Subventions

Organisme : RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
ID : BB/K020889/1

Informations de copyright

© 2021. The Author(s).

Références

Alamar MC, Tosetti R, Landahl S, Bermejo A, Terry LA (2017) Assuring potato tuber quality during storage: a future perspective. Front Plant Sci 8:2034
Bachem CW, van Eck HJ, de Vries ME (2019) Understanding genetic load in potato for hybrid diploid breeding. Mol Plant 12(7):896–898
pubmed: 31248722 doi: 10.1016/j.molp.2019.05.015
Bamberg JB (2010) Tuber dormancy lasting eight years in the wild potato Solanum jamesii. Am J Potato Res 87(2):226–228
doi: 10.1007/s12230-009-9124-9
Bates DM, Chambers JM (1992) Nonlinear models. In: Chambers JM, Hastie TJ (eds) Statistical models in S. Wadsworth & Brooks/Cole, Pacific Grove, California.
Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. John Wiley, New York, NY
doi: 10.1002/9780470316757
Bisognin DA, Manrique-Carpintero NC, Douches DS (2018) QTL analysis of tuber dormancy and sprouting in potato. Am J Potato Res 95(4):374–382
doi: 10.1007/s12230-018-9638-0
Bogucki S, Nelson DC (1980) Length of dormancy and sprouting characteristics of 10 potato cultivars. Am Potato J 57(4):151–157
doi: 10.1007/BF02853866
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Bonierbale MW, Plaisted RL, Tanksley SD (1988) Construction of a genetic-map of potato based on molecular markers from tomato. Am Potato J 65(8):471–472
Bryan GJ, McLean K, Bradshaw JE, De Jong WS, Phillips M, Castelli L et al. (2002) Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet 105(1):68–77
pubmed: 12582563 doi: 10.1007/s00122-002-0873-9
Campbell R, Pont SDA, Morris JA, McKenzie G, Sharma SK, Hedley PE et al. (2014) Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Theor Appl Genet 127(9):1917–1933
pubmed: 24965888 doi: 10.1007/s00122-014-2349-0
Claassens MM, Vreugdenhil D (2000) Is dormancy breaking of potato tubers the reverse of tuber initiation? Potato Res 43(4):347–369
doi: 10.1007/BF02360540
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491
pubmed: 21478889 pmcid: 3083463 doi: 10.1038/ng.806
Felcher KJ, Coombs JJ, Massa AN, Hansey CN, Hamilton JP, Veilleux RE et al. (2012) Integration of two diploid potato linkage maps with the potato genome sequence. Plos ONE 7:4
doi: 10.1371/journal.pone.0036347
Freyre R, Warnke S, Sosinski B, Douches DS (1994) Quantitative trait locus analysis of tuber dormancy in diploid potato (Solanum SPP). Theor Appl Genet 89(4):474–480
pubmed: 24177897 doi: 10.1007/BF00225383
Gebhardt C, Urbany C, Stich B (2014) Dissection of potato complex traits by linkage and association genetics as basis for developing molecular diagnostics in breeding programs. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources: volume 2. Crop productivity, food security and nutritional quality. Springer Netherlands, Dordrecht, p 47–85
doi: 10.1007/978-94-007-7575-6_3
Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–583
Hackett CA, Bradshaw JE, Bryan GJ (2014) QTL mapping in autotetraploids using SNP dosage information. Theor Appl Genet 127(9):1885–1904
pubmed: 24981609 pmcid: 4145212 doi: 10.1007/s00122-014-2347-2
Hackett CA, McLean K, Bryan GJ (2013) Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. Plos ONE 8:5
doi: 10.1371/journal.pone.0063939
Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN, Van Deynze A, et al. (2011) Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genom 12:302
Kaminski KP, Korup K, Andersen MN, Sonderkaer M, Andersen MS, Kirk HG et al. (2015) Cytosolic glutamine synthetase is important for photosynthetic efficiency and water use efficiency in potato as revealed by high-throughput sequencing QTL analysis. Theor Appl Genet 128(11):2143–2153
pubmed: 26163769 pmcid: 4624824 doi: 10.1007/s00122-015-2573-2
Kloosterman B, Abelenda JA, Gomez MDC, Oortwijn M, de Boer JM, Kowitwanich K et al. (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495(7440):246–250
pubmed: 23467094 doi: 10.1038/nature11912
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645
pubmed: 19541911 pmcid: 2752132 doi: 10.1101/gr.092759.109
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–U354
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Lightbourn GJ, Veilleux RE (2007) Production and evaluation of somatic hybrids derived from monoploid potato. Am J Potato Res 84(5):425–435
doi: 10.1007/BF02987188
Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc, Sunderland, MA
Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR et al. (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62(4):674–688
pubmed: 20202169 doi: 10.1111/j.1365-313X.2010.04185.x
Morris WL, Alamar MC, Lopez-Cobollo RM, Castillo JC, Bennett M, Van der Kaay J et al. (2019) A member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family controls sprout growth in potato tubers. J Exp Bot 70(3):835–843
pubmed: 30395257 doi: 10.1093/jxb/ery387
Paine CET, Marthews TR, Vogt DR, Purves D, Rees M, Hector A et al. (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol Evol 3(2):245–256
doi: 10.1111/j.2041-210X.2011.00155.x
Paul V, Ezekiel R, Pandey R (2016) Sprout suppression on potato: need to look beyond CIPC for more effective and safer alternatives. J Food Sci Technol 53(1):1–18
pubmed: 26787928 doi: 10.1007/s13197-015-1980-3
Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195
doi: 10.1038/nature10158
Prashar A, Hornyik C, Young V, McLean K, Sharma SK, Dale MFB et al. (2014) Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theor Appl Genet 127(10):2159–2171
pubmed: 25159608 doi: 10.1007/s00122-014-2369-9
R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
Ramsak Z, Coll A, Stare T, Tzfadia O, Baebler S, Van de Peer Y et al. (2018) Network modeling unravels mechanisms of crosstalk between ethylene and salicylate signaling in potato. Plant Physiol 178(1):488–499
pubmed: 29934298 pmcid: 6130022 doi: 10.1104/pp.18.00450
Sharma SK, Bolser D, de Boer J, Sonderkaer M, Amoros W, Carboni MF et al. (2013) Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3-Genes Genomes Genet 3(11):2031–2047
Sharma SK, Bryan GJ (2017) Genome sequence-based marker development and genotyping in potato. In: Kumar Chakrabarti S, Xie C, Kumar Tiwari J (eds) The potato genome. Springer International Publishing, Cham, p 307–326
doi: 10.1007/978-3-319-66135-3_17
Simko I, McMurry S, Yang HM, Manschot A, Davies PJ, Ewing EE (1997) Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content. Plant Physiol 115(4):1453–1459
pubmed: 12223876 pmcid: 158610 doi: 10.1104/pp.115.4.1453
Simmonds NW (1964) The genetics of seed and tuber dormancy in the cultivated potatoes. Heredity 19(3):489–504
doi: 10.1038/hdy.1964.56
Sonnewald U (2001) Control of potato tuber sprouting. Trends Plant Sci 6(8):333–335
pubmed: 11495763 doi: 10.1016/S1360-1385(01)02020-9
Tomato Genome Sequencing Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641
doi: 10.1038/nature11119
Trapero-Mozos A, Morris WL, Ducreux LJM, McLean K, Stephens J, Torrance L et al. (2018) Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of Heat-Shock Cognate 70. Plant Biotechnol J 16(1):197–207
pubmed: 28509353 doi: 10.1111/pbi.12760
van den Berg JH, Ewing EE, Plaisted RL, McMurry S, Bonierbale MW (1996) QTL analysis of potato tuber dormancy. Theor Appl Genet 93(3):317–324
pubmed: 24162286 doi: 10.1007/BF00223171
Van Ooijen JW (2009) MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen, Netherlands
Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93(5):343–349
doi: 10.1017/S0016672311000279
van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B et al. (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: Providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173(2):1075–1087
pubmed: 16582432 pmcid: 1526527 doi: 10.1534/genetics.106.055871
Vanittersum MK (1992) Variation in the duration of tuber dormancy within a seed potato lot. Potato Res 35(3):261–269
doi: 10.1007/BF02357706
Varkonyi-Gasic E, Moss SMA, Voogd C, Wang TC, Putterill J, Hellens RP (2013) Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. N Phytol 198(3):732–746
doi: 10.1111/nph.12162
VSN International (2019). Genstat for Windows 19th Edition. VSN International, Hemel Hempstead, UK.
Winsor CP (1932) The Gompertz curve as a growth curve. Proc Natl Acad Sci U S A 18(1):1–8
pubmed: 16577417 pmcid: 1076153 doi: 10.1073/pnas.18.1.1
Zeide B (1993) Analysis of growth equations. Sci 39(3):594–616
doi: 10.1093/forestscience/39.3.594
Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136(4):1457–1468
pubmed: 8013918 pmcid: 1205924 doi: 10.1093/genetics/136.4.1457

Auteurs

Sanjeev Kumar Sharma (SK)

Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom. sanjeev.sharma@hutton.ac.uk.

Karen McLean (K)

Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom.

Richard J Colgan (RJ)

Natural Resources Institute, University of Greenwich, Kent, United Kingdom.

Debbie Rees (D)

Natural Resources Institute, University of Greenwich, Kent, United Kingdom.

Stephen Young (S)

Natural Resources Institute, University of Greenwich, Kent, United Kingdom.

Mads Sønderkær (M)

Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.

Leon A Terry (LA)

Plant Science Laboratory, Cranfield University, Bedfordshire, United Kingdom.

Colin Turnbull (C)

Department of Life Sciences, Imperial College London, London, United Kingdom.

Mark A Taylor (MA)

Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom.

Glenn J Bryan (GJ)

Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom. glenn.bryan@hutton.ac.uk.

Articles similaires

Gene Editing Climate Change Africa South of the Sahara Crops, Agricultural Agriculture
Thlaspi Plant Oils Domestication Seeds Crops, Agricultural
1.00
Triticum Quantitative Trait Loci Hardness Edible Grain Seeds

Lactuca super-pangenome reduces bias towards reference genes in lettuce research.

Dirk-Jan M van Workum, Sarah L Mehrem, Basten L Snoek et al.
1.00
Lactuca Genome, Plant Genome-Wide Association Study Quantitative Trait Loci Polymorphism, Single Nucleotide

Classifications MeSH