Antidiabetic Properties of Curcumin: Insights on New Mechanisms.

Alpha-amylase Alpha-glycosidase Curcumin Diabetes Dipeptidyl peptidase-4 Glucagon-like peptide-1 Glucose transporter PPARγ

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2021
Historique:
entrez: 31 7 2021
pubmed: 1 8 2021
medline: 4 8 2021
Statut: ppublish

Résumé

Plant extracts have been used to treat a wide range of human diseases. Curcumin, a bioactive polyphenol derived from Curcuma longa L., exhibits therapeutic effects against diabetes while only negligible adverse effects have been observed. Antioxidant and anti-inflammatory properties of curcumin are the main and well-recognized pharmacological effects that might explain its antidiabetic effects. Additionally, curcumin may regulate novel signaling molecules and enzymes involved in the pathophysiology of diabetes, including glucagon-like peptide-1, dipeptidyl peptidase-4, glucose transporters, alpha-glycosidase, alpha-amylase, and peroxisome proliferator-activated receptor gamma (PPARγ). Recent findings from in vitro and in vivo studies on novel signaling pathways involved in the potential beneficial effects of curcumin for the treatment of diabetes are discussed in this review.

Identifiants

pubmed: 34331689
doi: 10.1007/978-3-030-56153-6_9
doi:

Substances chimiques

Anti-Inflammatory Agents 0
Hypoglycemic Agents 0
PPAR gamma 0
Plant Extracts 0
Curcumin IT942ZTH98

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

151-164

Informations de copyright

© 2021. The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Dall TM, Yang W, Gillespie K, Mocarski M, Byrne E, Cintina I et al (2019) The economic burden of elevated blood glucose levels in 2017: diagnosed and undiagnosed diabetes, gestational diabetes mellitus, and prediabetes. Diabetes Care 42(9):1661–1668
pubmed: 30940641 pmcid: 6702607 doi: 10.2337/dc18-1226
Rahman F, McEvoy JW, Ohkuma T, Marre M, Hamet P, Harrap S et al (2019) Effects of blood pressure lowering on clinical outcomes according to baseline blood pressure and cardiovascular risk in patients with type 2 diabetes mellitus: the ADVANCE trial. Hypertension 73(6):1291–1299
pubmed: 31030606 doi: 10.1161/HYPERTENSIONAHA.118.12414 pmcid: 31030606
Hu W, Jiang C, Guan D, Dierickx P, Zhang R, Moscati A et al (2019) Patient adipose stem cell-derived adipocytes reveal genetic variation that predicts antidiabetic drug response. Cell Stem Cell 24(2):299–308. e296
pubmed: 30639037 pmcid: 6368460 doi: 10.1016/j.stem.2018.11.018
Association AD (2020) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care 43(Suppl 1):S14–S31
doi: 10.2337/dc20-S002
Xu YXZ, Xi S, Qian X (2019) Evaluating traditional Chinese medicine and herbal products for the treatment of gestational diabetes mellitus. J Diabetes Res 2019:9182595. https://doi.org/10.1155/2019/9182595
doi: 10.1155/2019/9182595 pubmed: 31886289 pmcid: 6915007
Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian MS, Majeed M et al (2017) Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology 25(1):25–31
pubmed: 27928704 doi: 10.1007/s10787-016-0301-4 pmcid: 27928704
Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A (2018) Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 136:181–193
pubmed: 30219581 doi: 10.1016/j.phrs.2018.09.012 pmcid: 30219581
Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol 233(2):830–848
pubmed: 28059453 doi: 10.1002/jcp.25778 pmcid: 28059453
Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, Salehizadeh L, Rahmani S, Behnam B et al (2020) Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Complement Ther Med 49:102322. https://doi.org/10.1016/j.ctim.2020.102322
doi: 10.1016/j.ctim.2020.102322 pubmed: 32147075 pmcid: 32147075
Abbas Momtazi A, Sahebkar A (2016) Difluorinated curcumin: a promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des 22(28):4386–4397
doi: 10.2174/1381612822666160527113501
Amel Zabihi N, Pirro MP, Johnston T, Sahebkar A (2017) Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes. Curr Pharm Des 23(7):969–982
doi: 10.2174/1381612822666161010115235
Hasanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar A (2020) Curcumin: an inflammasome silencer. Pharmacol Res 159:104921. https://doi.org/10.1016/j.phrs.2020.104921 . Epub 2020 May 25. PMID: 32464325. 
Mohajeri M, Behnam B, Cicero AFG, Sahebkar A (2018) Protective effects of curcumin against aflatoxicosis: a comprehensive review. J Cell Physiol 233(4):3552–3577
pubmed: 29034472 doi: 10.1002/jcp.26212
Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversin from ferula diversivittata in vitro and in vivo. Phytomedicine 17(3–4):269–273
pubmed: 19577457 doi: 10.1016/j.phymed.2009.05.020 pmcid: 19577457
Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101
pubmed: 28799796 doi: 10.1080/10408398.2017.1358139 pmcid: 28799796
Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20(4):335–345
pubmed: 27241179 doi: 10.1007/s40291-016-0202-7 pmcid: 27241179
Bagheri H, Ghasemi F, Barreto GE, Sathyapalan T, Jamialahmadi T, Sahebkar A (2020) The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. Biofactors 46(3):309–325. https://doi.org/10.1002/biof.1597 . Epub 2019 Dec 17. PMID: 31846136. 
Poolsup N, Suksomboon N, Kurnianta PDM, Deawjaroen K (2019) Effects of curcumin on glycemic control and lipid profile in prediabetes and type 2 diabetes mellitus: a systematic review and meta-analysis. PLoS One 14(4):e0215840. https://doi.org/10.1371/journal.pone.0215840
doi: 10.1371/journal.pone.0215840 pubmed: 31013312 pmcid: 6478379
Huang J, Qin S, Huang L, Tang Y, Ren H, Hu H (2019) Efficacy and safety of Rhizoma curcumea longae with respect to improving the glucose metabolism of patients at risk for cardiovascular disease: a meta-analysis of randomised controlled trials. J Hum Nutr Diet 32(5):591–606
pubmed: 30983042 doi: 10.1111/jhn.12648 pmcid: 30983042
Chapman K, Scorgie FE, Ariyarajah A, Stephens E, Enjeti AK, Lincz LF (2019) The effects of tetrahydrocurcumin compared to curcuminoids on human platelet aggregation and blood coagulation in vitro. Thromb Res 179:28–30
pubmed: 31075698 doi: 10.1016/j.thromres.2019.04.029 pmcid: 31075698
Liu X, Zhang W, Wang L, Wang S, Yu Y, Chen S et al (2019) Male patients with diabetes undergoing coronary artery bypass grafting have increased major adverse cerebral and cardiovascular events. Interact Cardiovasc Thorac Surg 28(4):607–612
pubmed: 30325425 doi: 10.1093/icvts/ivy287 pmcid: 30325425
Fujiwara H, Hosokawa M, Zhou X, Fujimoto S, Fukuda K, Toyoda K et al (2008) Curcumin inhibits glucose production in isolated mice hepatocytes. Diabetes Res Clin Pract 80(2):185–191
pubmed: 18221818 doi: 10.1016/j.diabres.2007.12.004 pmcid: 18221818
Aziz MTA, El-Asmar MF, El-Ibrashy IN, Rezq AM, Al-Malki AL, Wassef MA et al (2012) Effect of novel water soluble curcumin derivative on experimental type-1 diabetes mellitus (short term study). Diabetol Metab Syndr 4(1):30. https://doi.org/10.1186/1758-5996-4-30
doi: 10.1186/1758-5996-4-30 pubmed: 22762693 pmcid: 3533893
Kim T, Davis J, Zhang AJ, He X, Mathews ST (2009) Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun 388(2):377–382
pubmed: 19665995 doi: 10.1016/j.bbrc.2009.08.018 pmcid: 19665995
Zheng J, Cheng J, Zheng S, Feng Q, Xiao X (2018) Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front Pharmacol 9:472. https://doi.org/10.3389/fphar.2018.00472
doi: 10.3389/fphar.2018.00472 pubmed: 29867479 pmcid: 5954291
Wojcik M, Krawczyk M, Wojcik P, Cypryk K, Wozniak LA (2018) Molecular mechanisms underlying curcumin-mediated therapeutic effects in type 2 diabetes and cancer. Oxidative Med Cell Longev 2018:9698258. https://doi.org/10.1155/2018/9698258
doi: 10.1155/2018/9698258
Yaribeygi H, Katsiki N, Behnam B, Iranpanah H, Sahebkar A (2018) MicroRNAs and type 2 diabetes mellitus: molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism 87:48–55
pubmed: 30253864 doi: 10.1016/j.metabol.2018.07.001 pmcid: 30253864
Ashrafizadeh M, Yaribeygi H, Atkin SL, Sahebkar A (2019) Effects of newly introduced antidiabetic drugs on autophagy. Diabetes Metab Syndr 3(4):2445–2449
doi: 10.1016/j.dsx.2019.06.028
Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ et al (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3(1):1–17
doi: 10.1038/nrdp.2017.16
Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389(10085):2239–2251
pubmed: 28190580 doi: 10.1016/S0140-6736(17)30058-2 pmcid: 28190580
Ramesh M, Muthuraman A (2018) Flavoring and coloring agents: health risks and potential problems. In: Natural and artificial flavoring agents and food dyes. Elsevier, Amsterdam, Netherlands, pp 1–28
Raj R, Sahay S, Tripathi J (2016) Medications of diabetes mellitus and antidiabetic medicinal plants: a review. Drugs 1(1):19–28
Vamanu E, Gatea F, Sârbu I, Pelinescu D (2019) An in vitro study of the influence of Curcuma longa extracts on the microbiota modulation process, in patients with hypertension. Pharmaceutics 11(4):191. https://doi.org/10.3390/pharmaceutics11040191
doi: 10.3390/pharmaceutics11040191 pmcid: 6523074
Osorio-Tobón JF, Carvalho PI, Barbero GF, Nogueira GC, Rostagno MA, de Almeida Meireles MA (2016) Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chem 200:167–174
pubmed: 26830575 doi: 10.1016/j.foodchem.2016.01.021 pmcid: 26830575
Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G (2019) The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: a randomized, double-blind clinical trial. Diabetol Metab Syndr 11(1):41. https://doi.org/10.1186/s13098-019-0437-7
doi: 10.1186/s13098-019-0437-7 pubmed: 31149032 pmcid: 6537430
Rungseesantivanon S, Thenchaisri N, Ruangvejvorachai P, Patumraj S (2010) Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition. BMC Complement Altern Med 10(1):57. https://doi.org/10.1186/1472-6882-10-57
doi: 10.1186/1472-6882-10-57 pubmed: 20946622 pmcid: 2964550
Asadi S, Gholami MS, Siassi F, Qorbani M, Khamoshian K, Sotoudeh G (2019) Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: a randomized double-blind placebo-controlled clinical trial. Complement Ther Med 43:253–260
pubmed: 30935539 doi: 10.1016/j.ctim.2019.02.014 pmcid: 30935539
Onyenibe NS, Nathaniel NA, Udogadi NS, Iyanu OO (2019) Hypoglycemic and antioxidant capacity of curcuma longa and Viscum album in alloxan induced diabetic male Wistar rats. Int J Diabetes Endocrinol 4(1):26. https://doi.org/10.11648/j.ijde.20190401.15
doi: 10.11648/j.ijde.20190401.15
Ibrahim ZS, Soliman MM, Mahmoud S, Shukry M (2017) Cardioprotective effects of curcumin against diabetes and nicotine combined oxidative stress. Afr J Tradit Complement Altern Med 14(6):64–71
doi: 10.21010/ajtcam.v14i6.7
Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M et al (2005) Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-ay mice. J Agric Food Chem 53(4):959–963
pubmed: 15713005 doi: 10.1021/jf0483873 pmcid: 15713005
Su LQ, Chi HY (2017) Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-α in serum of type 2 diabetes mellitus rat models. Saudi J Biol Sci 24(8):1776–1780
pubmed: 29551922 pmcid: 5851928 doi: 10.1016/j.sjbs.2017.11.011
Na LXLY, Pan HZ, Zhou XL, Sun DJ, Meng M, Li XX, Sun CH (2013) Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res 57(9):1569–1577
pubmed: 22930403 doi: 10.1002/mnfr.201200131 pmcid: 22930403
Chuengsamarn SRS, Phonrat B, Tungtrongchitr R, Jirawatnotai S (2014) Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J Nutr Biochem 25(2):144–150
pubmed: 24445038 doi: 10.1016/j.jnutbio.2013.09.013 pmcid: 24445038
Wojcik M, Krawczyk M, Wozniak LA (2018) Antidiabetic activity of curcumin: insight into its mechanisms of action. In: Bagchi D, Nair S (eds) Nutritional and therapeutic interventions for diabetes and metabolic syndrome. Elsevier, Amsterdam, Netherlands, pp 385–401
doi: 10.1016/B978-0-12-812019-4.00031-3
Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17(6):819–837
pubmed: 23684623 pmcid: 23684623 doi: 10.1016/j.cmet.2013.04.008
Müller TD, Finan B, Bloom S, D’Alessio D, Drucker DJ, Flatt P et al (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130
pubmed: 31767182 pmcid: 6812410 doi: 10.1016/j.molmet.2019.09.010
Drucker DJ (2018) Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 27(4):740–756
pubmed: 29617641 doi: 10.1016/j.cmet.2018.03.001 pmcid: 29617641
Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A (2020) Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sci 241:117152. https://doi.org/10.1016/j.lfs.2019.117152
doi: 10.1016/j.lfs.2019.117152 pubmed: 31837333 pmcid: 31837333
Tsuda T (2015) Possible abilities of dietary factors to prevent and treat diabetes via the stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res 59(7):1264–1273
pubmed: 25707985 doi: 10.1002/mnfr.201400871 pmcid: 25707985
Aziz MA, El-Asmar MF, Rezq AM, Wassef MA, Fouad H, Roshdy NK et al (2014) Effects of a novel curcumin derivative on insulin synthesis and secretion in streptozotocin-treated rat pancreatic islets in vitro. Chin Med 9(1):3. https://doi.org/10.1186/1749-8546-9-3
doi: 10.1186/1749-8546-9-3 pubmed: 24422903 pmcid: 3896850
Planes-Muñoz D, López-Nicolás R, González-Bermúdez CA, Ros-Berruezo G, Frontela-Saseta C (2018) In vitro effect of green tea and turmeric extracts on GLP-1 and CCK secretion: the effect of gastrointestinal digestion. Food Funct 9(10):5245–5250
pubmed: 30226521 doi: 10.1039/C8FO01334A pmcid: 30226521
Takikawa M, Kurimoto Y, Tsuda T (2013) Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation. Biochem Biophys Res Commun 435(2):165–170
pubmed: 23660191 doi: 10.1016/j.bbrc.2013.04.092 pmcid: 23660191
Kato M, Nishikawa S, Ikehata A, Dochi K, Tani T, Takahashi T et al (2017) Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res 61(3):1600471. https://doi.org/10.1002/mnfr.201600471
doi: 10.1002/mnfr.201600471
Alli-Oluwafuyi AM, Luis PB, Nakashima F, Giménez-Bastida JA, Presley SH, Duvernay MT et al (2019) Curcumin induces secretion of glucagon-like peptide-1 through an oxidation-dependent mechanism. Biochimie 165:250–257
pubmed: 31470039 pmcid: 6746602 doi: 10.1016/j.biochi.2019.08.013
Sharma G, Hora S, Aeri V, Katare DP (2018) Glucagon like peptide (Glp–1) receptor: a promising therapeutic target for screening of herbal antidiabetic compounds. Asian J Pharm 12(2):S512–S518
Huang PK, Lin SR, Chang CH, Tsai MJ, Lee DN, Weng CF (2019) Natural phenolic compounds potentiate hypoglycemia via inhibition of Dipeptidyl peptidase IV. Sci Rep 9(1):1–11
Antonyan A, De A, Vitali L, Pettinari R, Marchetti F, Gigliobianco M et al (2014) Evaluation of (arene) Ru (II) complexes of curcumin as inhibitors of dipeptidyl peptidase IV. Biochimie 99:146–152
pubmed: 24316375 doi: 10.1016/j.biochi.2013.11.021 pmcid: 24316375
Istyastono EP (2009) Docking studies of curcumin as a potential lead compound to develop novel dipeptydyl peptidase-4 inhibitors. Indones J Chem 9(1):132–136
doi: 10.22146/ijc.21574
Zanzer YC, Batista ÂG, Dougkas A, Tovar J, Granfeldt Y, Östman E (2019) Difficulties in translating appetite sensations effect of turmeric-based beverage when given prior to isoenergetic medium-or high-fat meals in healthy subjects. Nutrients 11(4):736. https://doi.org/10.3390/nu11040736
doi: 10.3390/nu11040736 pmcid: 6520817
Dash RP, Babu RJ, Srinivas NR (2018) Reappraisal and perspectives of clinical drug–drug interaction potential of α-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica 48(1):89–108
pubmed: 28010166 doi: 10.1080/00498254.2016.1275063 pmcid: 28010166
Taslimi P, Aslan HE, Demir Y, Oztaskin N, Maraş A, Gulçin İ et al (2018) Diarylmethanon, bromophenol and diarylmethane compounds: discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int J Biol Macromol 119:857–863
pubmed: 30077669 doi: 10.1016/j.ijbiomac.2018.08.004 pmcid: 30077669
Jhong CH, Riyaphan J, Lin SH, Chia YC, Weng CF (2015) Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Biofactors 41(4):242–251
pubmed: 26154585 doi: 10.1002/biof.1219 pmcid: 26154585
Rasouli H, Hosseini-Ghazvini SM-B, Adibi H, Khodarahmi R (2017) Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct 8(5):1942–1954
pubmed: 28470323 doi: 10.1039/C7FO00220C pmcid: 28470323
Nampoothiri SV, Lekshmi P, Venugopalan V, Menon AN (2012) Antidiabetic and antioxidant potentials of spent turmeric oleoresin, a by-product from curcumin production industry. Asian Pac J Trop Dis 2:S169–S172
doi: 10.1016/S2222-1808(12)60146-7
Hasimun P, Adnyana I, Valentina R, Lisnasari E (2016) Potential alpha-glucosidase inhibitor from selected Zingiberaceae family. Asian J Pharm Clin Res 9(1):164–167
Yousefi A, Yousefi R, Panahi F, Sarikhani S, Zolghadr AR, Bahaoddini A et al (2015) Novel curcumin-based pyrano [2, 3-d] pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: implications for their pleiotropic effects against diabetes complications. Int J Biol Macromol 78:46–55
pubmed: 25843662 doi: 10.1016/j.ijbiomac.2015.03.060 pmcid: 25843662
Butala MA, Kukkupuni SK, Venkatasubramanian P, Vishnuprasad CN (2018) An ayurvedic anti-diabetic formulation made from Curcuma longa L. and Emblica officinalis L. inhibits α-amylase, α-glucosidase, and starch digestion, in vitro. Starch-Stärke 70(5–6):1700182. https://doi.org/10.1002/star.201700182
doi: 10.1002/star.201700182
Wang Y, Bu C, Wu K, Wang R, Wang J (2019) Curcumin protects the pancreas from acute pancreatitis via the mitogenactivated protein kinase signaling pathway. Mol Med Rep 20(4):3027–3034
pubmed: 31432122 pmcid: 6755239
Gülçubuk A, Sönmez K, Gürel A, Altunatmaz K, Gürler N, Aydın S et al (2005) Pathologic alterations detected in acute pancreatitis induced by sodium taurocholate in rats and therapeutic effects of curcumin, ciprofloxacin and metronidazole combination. Pancreatology 5(4–5):345–353
pubmed: 15980663 doi: 10.1159/000086534 pmcid: 15980663
Chen K, Chao D, Liu C, Chen C, Wang D (2010) Curcumin attenuates airway hyperreactivity induced by ischemia-reperfusion of the pancreas in rats. Transplant Proc 42(3):744–747
pubmed: 20430162 doi: 10.1016/j.transproceed.2010.03.017 pmcid: 20430162
Ramakrishna Rao R, Platel K, Srinivasan K (2003) In vitro influence of spices and spice-active principles on digestive enzymes of rat pancreas and small intestine. Food Nahrung 47(6):408–412
pubmed: 14727769 doi: 10.1002/food.200390091 pmcid: 14727769
Platel K, Srinivasan K (2000) Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Food Nahrung 44(1):42–46
pubmed: 10702999 doi: 10.1002/(SICI)1521-3803(20000101)44:1<42::AID-FOOD42>3.0.CO;2-D pmcid: 10702999
Du ZY, Liu RR, Shao WY, Mao XP, Ma L, Gu LQ et al (2006) α-Glucosidase inhibition of natural curcuminoids and curcumin analogs. Eur J Med Chem 41(2):213–218
pubmed: 16387392 doi: 10.1016/j.ejmech.2005.10.012 pmcid: 16387392
Lekshmi P, Arimboor R, Nisha V, Menon AN, Raghu K (2014) In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme. Int J Food Sci 51(12):3910–3917
Akbar MU, Zia KM, Nazir A, Iqbal J, Ejaz SA, Akash MSH (2018) Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS PharmSciTech 19(6):2719–2739
pubmed: 29978290 doi: 10.1208/s12249-018-1098-9 pmcid: 29978290
Banuppriya G, Sribalan R, Fathima SAR, Padmini V (2018) Synthesis of β-ketoamide curcumin analogs for anti-diabetic and AGE s inhibitory activities. Chem Biodivers 15(8):e1800105. https://doi.org/10.1002/cbdv.201800105
doi: 10.1002/cbdv.201800105 pubmed: 29752771 pmcid: 29752771
Riyaphan J, Jhong CH, Lin SR, Chang CH, Tsai MJ, Lee DN et al (2018) Hypoglycemic efficacy of docking selected natural compounds against α-glucosidase and α-amylase. Molecules 23(9):2260. https://doi.org/10.3390/molecules23092260
doi: 10.3390/molecules23092260 pmcid: 6225388
Gukovsky I, Reyes CN, Vaquero EC, Gukovskaya AS, Pandol SJ (2003) Curcumin ameliorates ethanol and nonethanol experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 284(1):G85–G95
pubmed: 12488237 doi: 10.1152/ajpgi.00138.2002 pmcid: 12488237
Prakash UN, Srinivasan K (2012) Fat digestion and absorption in spice-pretreated rats. J Sci Food Agric 92(3):503–510
pubmed: 21918995 doi: 10.1002/jsfa.4597 pmcid: 21918995
Shafik NM, Abou-Fard GM (2016) Ameliorative effects of curcumin on fibrinogen-like protein-2 gene expression, some oxido-inflammatory and apoptotic markers in a rat model of l-arginine-induced acute pancreatitis. J Biochem Mol Toxicol 30(6):302–308
pubmed: 26862043 doi: 10.1002/jbt.21794 pmcid: 26862043
Yu S, Wang M, Guo X, Qin R (2018) Curcumin attenuates inflammation in a severe acute pancreatitis animal model by regulating TRAF1/ASK1 signaling. Med Sci Monit 24:2280–2286
pubmed: 29657313 pmcid: 5921955 doi: 10.12659/MSM.909557
Siriviriyakul P, Chingchit T, Klaikeaw N, Chayanupatkul M, Werawatganon D (2019) Effects of curcumin on oxidative stress, inflammation and apoptosis in L-arginine induced acute pancreatitis in mice. Heliyon 5(8):e02222. https://doi.org/10.1016/j.heliyon.2019.e02222
doi: 10.1016/j.heliyon.2019.e02222 pubmed: 31485503 pmcid: 6717142
Ragy MM, Ali FF, Toni ND (2019) Comparing the preventive effect of sodium hydrosulfide, leptin, and curcumin against L-arginine induced acute pancreatitis in rats: role of corticosterone and inducible nitric oxide synthase. Endocr Regul 53(4):221–230
pubmed: 31734652 doi: 10.2478/enr-2019-0022 pmcid: 31734652
Stanirowski PJ, Szukiewicz D, Pyzlak M, Abdalla N, Sawicki W, Cendrowski K (2017) Impact of pre-gestational and gestational diabetes mellitus on the expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 in human term placenta. Endocrine 55(3):799–808
pubmed: 27981520 doi: 10.1007/s12020-016-1202-4 pmcid: 27981520
Schiffer M, Susztak K, Ranalletta M, Raff AC, Bottinger EP, Charron MJ (2005) Localization of the GLUT8 glucose transporter in murine kidney and regulation in vivo in nondiabetic and diabetic conditions. Am J Physiol Gastrointest Liver Physiol 289(1):F186–F193
doi: 10.1152/ajprenal.00234.2004
Rathinam A, Pari L (2016) Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chem Biol Interact 256:161–166
pubmed: 27417257 doi: 10.1016/j.cbi.2016.07.009 pmcid: 27417257
Leturque A, Brot-Laroche E, Le Gall M, Stolarczyk E, Tobin V (2005) The role of GLUT2 in dietary sugar handling. Cell Physiol Biochem 61(4):529–537
Zhao FQ, Keating AF (2007) Functional properties and genomics of glucose transporters. Curr Genomics 8(2):113–128
pubmed: 18660845 pmcid: 2435356 doi: 10.2174/138920207780368187
Rudich A, Konrad D, Török D, Ben-Romano R, Huang C, Niu W et al (2003) Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia 46(5):649–658
pubmed: 12712244 doi: 10.1007/s00125-003-1080-1 pmcid: 12712244
Navale AMPA (2016) Glucose transporters: physiological and pathological roles. Biophys Rev 8(1):5–9
pubmed: 28510148 pmcid: 5425736 doi: 10.1007/s12551-015-0186-2
Lin J, Chen A (2011) Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2. Mol Cell Endocrinol 333(2):160–171
pubmed: 21195127 doi: 10.1016/j.mce.2010.12.028 pmcid: 21195127
Chauhan P, Tamrakar AK, Mahajan S, Prasad G (2018) Chitosan encapsulated nanocurcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function. Life Sci 213:226–235
pubmed: 30343126 doi: 10.1016/j.lfs.2018.10.027 pmcid: 30343126
Rashid K, Sil PC (2015) Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats. Toxicol Appl Pharmacol 282(3):297–310
pubmed: 25541178 doi: 10.1016/j.taap.2014.12.003 pmcid: 25541178
Priyanka A, Shyni G, Anupama N, Raj PS, Anusree S, Raghu K (2017) Development of insulin resistance through sprouting of inflammatory markers during hypoxia in 3T3-L1 adipocytes and amelioration with curcumin. Eur J Pharmacol 812:73–81
pubmed: 28684236 doi: 10.1016/j.ejphar.2017.07.005 pmcid: 28684236
Gunnink LK, Alabi OD, Kuiper BD, Gunnink SM, Schuiteman SJ, Strohbehn LE et al (2016) Curcumin directly inhibits the transport activity of GLUT1. Biochimie 125:179–185
pubmed: 27039889 pmcid: 5006061 doi: 10.1016/j.biochi.2016.03.014
Balan G, Bubalo N, Bubalo V, Zhminko P, Nedopytanska N, Babich V (2017) Family of nuclear peroxisome proliferator—activated receptors (PPARs): biological role in metabolic adaptation. Part III. PPARγ in energy homeostasis and formation of metabolic syndrome, hepatosteatosis, cardiovascular conditions and fibrosis (report 1). Ukranian J Mod Probl Toxicol (1-2):33–47
Mohammed F, Gurigis A, Abdel-Mageed W, Nassr A (2018) Improvement of insulin sensitivity and maintenance of glucose homeostasis in insulin-sensitive tissues via PPAR-γ and through activation of PI3K/p-Akt signaling pathway by resveratrol in type 2 diabetic rats. J Mol Immunol 3(119):2
Wilson C (2011) Diabetes: T2DM-PPARγ ligands without the adverse effects? Nat Rev Endocrinol 7(11):630. https://doi.org/10.1038/nrendo.2011.167
doi: 10.1038/nrendo.2011.167 pubmed: 21946892 pmcid: 21946892
Aboonabi A, Rose'Meyer R, Singh I, Aboonabi A (2020) Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects. Free Radic Biol Med 150:30–39
pubmed: 32061902 doi: 10.1016/j.freeradbiomed.2020.02.004 pmcid: 32061902
Naim MJ, Alam O, Alam MJ, Shaquiquzzaman M, Alam MM, Naidu VGM (2018) Synthesis, docking, in vitro and in vivo antidiabetic activity of pyrazole-based 2, 4-thiazolidinedione derivatives as PPAR-γ modulators. Arch Pharm 351(3–4):e1700223. https://doi.org/10.1002/ardp.201700223
doi: 10.1002/ardp.201700223
Blanquicett C, Kang B-Y, Ritzenthaler JD, Jones DP, Hart CM (2010) Oxidative stress modulates PPARγ in vascular endothelial cells. Free Radic Biol Med 48(12):1618–1625
pubmed: 20302927 pmcid: 2868091 doi: 10.1016/j.freeradbiomed.2010.03.007
Rinwa P, Kaur B, Jaggi AS, Singh N (2010) Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn Schmiedeberg's Arch Pharmacol 381(6):529–539
doi: 10.1007/s00210-010-0511-z
Narala VR, Smith MR, Adapala RK, Ranga R, Panati K, Moore BB et al (2009) Curcumin is not a ligand for peroxisome proliferator-activated receptor-γ. Gene Ther Mol Biol 13(1):20–25
pubmed: 19644570 pmcid: 2717748
Luo J, Qu J, Yang R, Ge M-X, Mei Y, Zhou B-T et al (2016) Phytochemicals mediate the expression and activity of OCTN2 as activators of the PPARγ/RXRα pathway. Front Pharmacol 7:189
pubmed: 27445823 pmcid: 4925669 doi: 10.3389/fphar.2016.00189
Jayakumar V, Ahmed SS, Ebenezar KK (2016) Multivariate analysis and molecular interaction of curcumin with PPARγ in high fructose diet induced insulin resistance in rats. Springerplus 5(1):1732. https://doi.org/10.1186/s40064-016-3364-1
doi: 10.1186/s40064-016-3364-1 pubmed: 27777867 pmcid: 5053957
El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA (2019) Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 177:389–398
pubmed: 30785036 doi: 10.1016/j.colsurfb.2019.02.024 pmcid: 30785036
Singh S, Usman K, Banerjee M (2016) Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes 7(15):302–315
pubmed: 27555891 pmcid: 4980637 doi: 10.4239/wjd.v7.i15.302
Zarvandi M, Rakhshandeh H, Abazari M, Shafiee-Nick R, Ghorbani A (2017) Safety and efficacy of a polyherbal formulation for the management of dyslipidemia and hyperglycemia in patients with advanced-stage of type-2 diabetes. Biomed Pharmacother 89:69–75
pubmed: 28214690 doi: 10.1016/j.biopha.2017.02.016 pmcid: 28214690
Weisberg S, Leibel R, Tortoriello D (2016) Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice. Nutr Diabetes 4:e205–e205
doi: 10.1038/nutd.2016.13
Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 32(6):985–995. https://doi.org/10.1002/ptr.6054 . Epub 2018 Feb 26. PMID: 29480523

Auteurs

Elahe Mohammadi (E)

Student Research Committee, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.

Behzad Behnam (B)

Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran. behnamb@kmu.ac.ir.
Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. behnamb@kmu.ac.ir.
Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran. behnamb@kmu.ac.ir.

Reza Mohammadinejad (R)

Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Paul C Guest (PC)

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.

Luis E Simental-Mendía (LE)

Biomedical Research Unit, Mexican Social Security Institute, Durango, Mexico.

Amirhossein Sahebkar (A)

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. sahebkara@mums.ac.ir.
Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. sahebkara@mums.ac.ir.
Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. sahebkara@mums.ac.ir.
Halal Research Center of IRI, FDA, Tehran, Iran. sahebkara@mums.ac.ir.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH