Genome-informed characterisation of antigenic drift in the haemagglutinin gene of equine influenza strains circulating in the United States from 2012 to 2017.
H3N8
N-glycosylation
amino acid substitution
antigenic drift
equine influenza
evolution
haemagglutinin
horse
phylogenetic analysis
Journal
Transboundary and emerging diseases
ISSN: 1865-1682
Titre abrégé: Transbound Emerg Dis
Pays: Germany
ID NLM: 101319538
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
revised:
14
07
2021
received:
04
06
2021
accepted:
24
07
2021
pubmed:
1
8
2021
medline:
22
7
2022
entrez:
31
7
2021
Statut:
ppublish
Résumé
Equine influenza virus (EIV) is a major infectious pathogen causing significant respiratory signs in equids worldwide. Voluntary surveillances in the United States recently reported EIV detection in horses with respiratory signs even with adequate vaccine protocols and biosecurity programs and posed a concern about suboptimal effectiveness of EIV vaccine in the United States. This study aims to determine the genetic characteristics of 58 field EIV H3N8 strains in the United States from 2012 to 2017 using the phylogenetic analysis based on the haemagglutinin (HA) gene. Amino acid substitution and acquisition of N-glycosylation of the HA gene were also evaluated. Phylogenetic analysis identified that almost all US field strains belonged to the Florida clade 1 (FC1) except one Florida clade 2 strain from a horse imported in 2014. US EIV strains in 2017 shared 11 fixed amino acid substitutions in the HA gene, compared to the vaccine strain (A/equine/Ohio/2003), and two additional amino acid substitutions were detected in 2019. The introduction of foreign EIV strains into the United States was not detected, but antigenic drift without acquisition of N-glycosylation in the HA gene was observed in US field strains until 2017. Considering the global dominance of FC1 strains, subsequent antigenic drift of US EIV strains should be monitored for better effectiveness of the EIV vaccine in the United States and global equine industries.
Substances chimiques
Hemagglutinins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e52-e63Subventions
Organisme : Center for Equine Health (CEH) grant award at UC Davis
Organisme : Graduate group in epidemiology Fellowship at UC Davis
Organisme : Graduate Student Support Program (GSSP) in the School of Veterinary Medicine at UC Davis
Organisme : US National Science Foundation (NSF)
ID : #1838207
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
Baele, G., Lemey, P., Bedford, T., Rambaut, A., Suchard, M. A., & Alekseyenko, A. V. (2012). Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution, 29, 2157-2167. https://doi.org/10.1093/molbev/mss084
Binns, M. M., Daly, J. M., Chirnside, E. D., Mumford, J. A., Wood, J. M., Richards, C. M., & Daniels, R. S. (1993). Genetic and antigenic analysis of an equine influenza H 3 isolate from the 1989 epidemic. Archives of Virology, 130, 33-43.
Bryant, N. A., Rash, A. S., Russell, C. A., Ross, J., Cooke, A., Bowman, S., MacRae, S., Lewis, N. S., Paillot, R., & Zanoni, R. (2009). Antigenic and genetic variations in European and North American equine influenza virus strains (H3N8) isolated from 2006 to 2007. Veterinary Microbiology, 138, 41-52.
Chang, D., & Zaia, J. (2019). Why glycosylation matters in building a better flu vaccine. Molecular & Cellular Proteomics, 18, 2348-2358. https://doi.org/10.1074/mcp.R119.001491
Chatham House (2018). Resourcetrade. earth. Chatham House. https://resourcetrade.earth/data
Compans, R. W., & Oldstone, M. B. (2014). Influenza pathogenesis and control (Vol. 1). Springer.
Cowled, B., Ward, M. P., Hamilton, S., & Garner, G. (2009). The equine influenza epidemic in Australia: spatial and temporal descriptive analyses of a large propagating epidemic. Preventive Veterinary Medicine, 92, 60-70.
Crawford, P. C., Dubovi, E. J., Castleman, W. L., Stephenson, I., Gibbs, E. P. J., Chen, L., Smith, C., Hill, R. C., Ferro, P., & Pompey, J. (2005). Transmission of equine influenza virus to dogs. Science 310, 482-485.
Criado, M. F., Bertran, K., Lee, D.-H., Killmaster, L., Stephens, C. B., Spackman, E., Sa e Silva, M., Atkins, E., Mebatsion, T., Widener, J., Pritchard, N., King, H., & Swayne, D. E. (2019). Efficacy of novel recombinant fowlpox vaccine against recent Mexican H7N3 highly pathogenic avian influenza virus. Vaccine, 37, 2232-2243. https://doi.org/10.1016/j.vaccine.2019.03.009
Cullinane, A., & Newton, J. R. (2013). Equine influenza-a global perspective. Veterinary Microbiology, 167, 205-214.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
Gao, J., Couzens, L., Burke, D. F., Wan, H., Wilson, P., Memoli, M. J., Xu, X., Harvey, R., Wrammert, J., & Ahmed, R. (2019). Antigenic drift of the influenza A (H1N1) pdm09 virus neuraminidase results in reduced effectiveness of A/California/7/2009 (H1N1pdm09)-specific antibodies. mBio, 10(2), e00307.
Gardy, J. L., & Loman, N. J. (2018). Towards a genomics-informed, real-time, global pathogen surveillance system. Nature Reviews Genetics, 19, 9-20.
Gildea, S., Quinlivan, M., Arkins, S., & Cullinane, A. (2012). The molecular epidemiology of equine influenza in Ireland from 2007-2010 and its international significance. Equine Veterinary Journal, 44, 387-392.
Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L., Daly, J. M., Mumford, J. A., & Holmes, E. C. (2004). Unifying the epidemiological and evolutionary dynamics of pathogens. Science, 303, 327-332.
Gupta, R., & Brunak, S. (2001). Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing, 7, 310-322.
Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160-174.
Hicks, J. T., Lee, D.-H., Duvvuri, V. R., Torchetti, M. K., Swayne, D. E., & Bahl, J. (2020). Agricultural and geographic factors shaped the North American 2015 highly pathogenic avian influenza H5N2 outbreak. PLoS Pathogens, 16, e1007857. https://doi.org/10.1371/journal.ppat.1007857
Ito, M., Nagai, M., Hayakawa, Y., Komae, H., Murakami, N., Yotsuya, S., Asakura, S., Sakoda, Y., & Kida, H. (2008). Genetic analyses of an H3N8 influenza virus isolate, causative strain of the outbreak of equine influenza at the Kanazawa racecourse in Japan in 2007. Journal of Veterinary Medical Science, 70, 899-906.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587-589. https://doi.org/10.1038/nmeth.4285
Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059-3066.
Koel, B. F., Burke, D. F., Bestebroer, T. M., van der Vliet, S., Zondag, G. C. M., Vervaet, G., Skepner, E., Lewis, N. S., Spronken, M. I. J., Russell, C. A., Eropkin, M. Y., Hurt, A. C., Barr, I. G., de Jong, J. C., Rimmelzwaan, G. F., Osterhaus, A. D. M. E., Fouchier, R. A. M., & Smith, D. J. (2013). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 342, 976-979. https://doi.org/10.1126/science.1244730
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
Lai, A. C., Lin, Y. P., Powell, D. G., Shortridge, K. F., Webster, R. G., Daly, J., & Chambers, T. M. (1994). Genetic and antigenic analysis of the influenza virus responsible for the 1992 Hong Kong equine influenza epizootic. Virology, 204, 673-679.
Legrand, L., Pitel, P., Cullinane, A., Fortier, G., & Pronost, S. (2015). Genetic evolution of equine influenza strains isolated in France from 2005 to 2010. Equine Veterinary Journal, 47, 207-211.
Lewis, N. S., Anderson, T. K., Kitikoon, P., Skepner, E., Burke, D. F., & Vincent, A. L. (2014). Substitutions near the hemagglutinin receptor-binding site determine the antigenic evolution of influenza A H3N2 viruses in U.S. swine. Journal of Virology, 88, 4752-4763. https://doi.org/10.1128/JVI.03805-13
Lewis, N. S., Daly, J. M., Russell, C. A., Horton, D. L., Skepner, E., Bryant, N. A., Burke, D. F., Rash, A. S., Wood, J. L. N., & Chambers, T. M. (2011). Antigenic and genetic evolution of equine influenza A (H3N8) virus from 1968 to 2007. Journal of Virology, 85, 12742-12749.
Livesay, G. J., O'neill, T., Hannant, D., Yadav, M. P., & Mumford, J. A. (1993). The outbreak of equine influenza (H3N8) in the United Kingdom in 1989: diagnostic use of an antigen capture ELISA. The Veterinary Record, 133, 515-519.
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2011). The CIPRES science gateway: a community resource for phylogenetic analyses. Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, New York, NY, United States (pp. 1-8).
Miño, S., Mojsiejczuk, L., Guo, W., Zhang, H., Qi, T., Du, C., Zhang, X., Wang, J., Campos, R., & Wang, X. (2019). Equine influenza virus in Asia: phylogeographic pattern and molecular features reveal circulation of an autochthonous lineage. Journal of Virology, 93(13), e00116-19.
Murcia, P. R., Wood, J. L., & Holmes, E. C. (2011). Genome-scale evolution and phylodynamics of equine H3N8 influenza A virus. Journal of Virology, 85, 5312-5322.
Nemoto, M., Yamayoshi, S., Bannai, H., Tsujimura, K., Kokado, H., Kawaoka, Y., & Yamanaka, T. (2019) A single amino acid change in hemagglutinin reduces the cross-reactivity of antiserum against an equine influenza vaccine strain. Archives of Virology, 164, 2355-2358. https://doi.org/10.1007/s00705-019-04328-4
Newton, J. R., Daly, J. M., Spencer, L., & Mumford, J. A. (2006). Description of the outbreak of equine influenza (H3N8) in the United Kingdom in 2003, during which recently vaccinated horses in Newmarket developed respiratory disease. Veterinary Record, 158, 185-192.
OIE. (2018). Expert surveillance panel on equine influenza vaccine composition-conclusions and recommendations. Office International des Epizooties Bulletin. https://oiebulletin.com/?officiel=8-4-1-oie-expert-surveillance-panel-on-equine-influenza-vaccine-composition
OIE. (2019). Expert surveillance panel on equine influenza vaccine composition-conclusions and recommendations. Office International des Epizooties Bulletin. https://oiebulletin.com/?officiel=08-4-1-2019-2-panel-en
OIE. (2020). Expert surveillance panel on equine influenza vaccine composition-conclusions and recommendations. Office International des Epizooties Bulletin. https://oiebulletin.com/?officiel=08-4-2-2020-1-panel
Powell, H., & Pekosz, A. (2020). Neuraminidase antigenic drift of H3N2 clade 3c. 2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLoS Pathogens, 16, e1008411.
Pusterla, N., Estell, K., Mapes, S., & Wademan, C. (2014). Detection of clade 2 equine influenza virus in an adult horse recently imported to the USA. Equine Veterinary Education, 26, 453-455.
Pusterla, N., Kass, P. H., Mapes, S., Johnson, C., Barnett, D. C., Vaala, W., Gutierrez, C., McDaniel, R., Whitehead, B., & Manning, J. (2011) Surveillance programme for important equine infectious respiratory pathogens in the USA. Veterinary Record, 169(1), 12.
Pusterla, N., Kass, P. H., Mapes, S., Wademan, C., Akana, N., Barnett, C., MacKenzie, C., & Vaala, W. (2015). Voluntary surveillance program for equine influenza virus in the United States from 2010 to 2013. Journal of Veterinary Internal Medicine, 29, 417-422.
Rambaut, A., & Drummond, A. (2019). TreeAnnotator v1.10.5. (Part of the BEAST package). https://beast.bio.ed.ac.uk
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901-904.
Rambaut, A., Lam, T. T., Carvalho, L. M, & Pybus, O. G. (2016). Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evolution, 2, vew007. https://doi.org/10.1093/ve/vew007
Rodriguez, L., Reedy, S., Nogales, A., Murcia, P. R., Chambers, T. M., & Martinez-Sobrido, L. (2018). Development of a novel equine influenza virus live-attenuated vaccine. Virology, 516, 76-85.
Rosanowski, S. M., Carpenter, T. E., Adamson, D., Rogers, C. W., Pearce, P., Burns, M., & Cogger, N. (2019). An economic analysis of a contingency model utilising vaccination for the control of equine influenza in a non-endemic country. PLoS One, 14, e0210885.
Russell, C. J., Hu, M., & Okda, F. A. (2018). Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends in Microbiology, 26(10), 841-853.
Scholtens, R. G., Steele, J. H., Dowdle, W. R., Yarbrough, W. B., & Robinson, R. Q. (1964). US epizootic of equine influenza, 1963. Public Health Reports (Washington, DC: 1896), 79, 393-402.
Smith, D. J., Lapedes, A. S., de Jong, J. C., Bestebroer, T. M., Rimmelzwaan, G. F., Osterhaus, A. D., & Fouchier, R. A. (2004). Mapping the antigenic and genetic evolution of influenza virus. Science, 305, 371-376.
Smyth, G. B., Dagley, K., & Tainsh, J. (2011). Insights into the economic consequences of the 2007 equine influenza outbreak in Australia. Australian Veterinary Journal, 89, 151-158.
Sovinova, O., Tumova, B., Pouska, F., & Nemec, J. (1958). Isolation of a virus causing respiratory disease in horses. Acta Virologica, 2, 52.
Sreenivasan, C., Jandhyala, S., Luo, S., Hause, B., Thomas, M., Knudsen, D., Leslie-Steen, P., Clement, T., Reedy, S., & Chambers, T. (2018). Phylogenetic analysis and characterization of a sporadic isolate of equine influenza A H3N8 from an unvaccinated horse in 2015. Viruses, 10, 31.
Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, vey016. https://doi.org/10.1093/ve/vey016
Suchard Marc A., Weiss Robert E., Sinsheimer Janet S. (2001). Bayesian selection of continuous-time Markov Chain Evolutionary Models. Molecular Biology and Evolution, 18(6), 1001-1013. https://doi.org/10.1093/oxfordjournals.molbev.a003872
Webster, R. G. (1993). Are equine 1 influenza viruses still present in horses? Equine Veterinary Journal, 25, 537-538.
Wiley, D., Wilson, I., & Skehel, J. (1981). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature, 289, 373-378.
Wilson, I. A., & Cox, N. J. (1990). Structural basis of immune recognition of influenza virus hemagglutinin. Annual Review of Immunology, 8, 737-787. https://doi.org/10.1146/annurev.iy.08.040190.003513
Woodward, A., Rash, A. S., Medcalf, E., Bryant, N. A., & Elton, D. M. (2015). Using epidemics to map H3 equine influenza virus determinants of antigenicity. Virology, 481, 187-198.
Woodward, A. L., Rash, A. S., Blinman, D., Bowman, S., Chambers, T. M., Daly, J. M., Damiani, A., Joseph, S., Lewis, N., McCauley, J. W., Medcalf, L., Mumford, J., Newton, J. R., Tiwari, A., Bryant, N. A., & Elton, D. M. (2014). Development of a surveillance scheme for equine influenza in the UK and characterisation of viruses isolated in Europe, Dubai and the USA from 2010-2012. Veterinary Microbiology, 169, 113-127. https://doi.org/10.1016/j.vetmic.2013.11.039
Xie, W., Lewis, P. O., Fan, Y., Kuo, L., & Chen, M. - H. (2010). Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60, 150-160.
Yamanaka, T., Niwa, H., Tsujimura, K., Kondo, T., & Matsumura, T. (2008). Epidemic of equine influenza among vaccinated racehorses in Japan in 2007. Journal of Veterinary Medical Science, 70, 623-625.
Ye, J., Xu, Y., Harris, J., Sun, H., Bowman, A. S., Cunningham, F., Cardona, C., Yoon, K. J., Slemons, R. D., & Wan, X.-F. (2013). Mutation from arginine to lysine at the position 189 of hemagglutinin contributes to the antigenic drift in H3N2 swine influenza viruses. Virology, 446, 225-229. https://doi.org/10.1016/j.virol.2013.08.004