Does Counting Different Life Stages Impact Estimates for Extinction Probabilities for Tsetse (Glossina spp)?
Extinction probability
Geometric distribution
Insect population dynamics
Tsetse (Glossina spp)
Journal
Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404
Informations de publication
Date de publication:
02 08 2021
02 08 2021
Historique:
received:
28
11
2020
accepted:
07
07
2021
entrez:
2
8
2021
pubmed:
3
8
2021
medline:
15
12
2021
Statut:
epublish
Résumé
As insect populations decline, due to climate change and other environmental disruptions, there has been an increased interest in understanding extinction probabilities. Generally, the life cycle of insects occurs in well-defined stages: when counting insects, questions naturally arise about which life stage to count. Using tsetse flies (vectors of trypanosomiasis) as a case study, we develop a model that works when different life stages are counted. Previous branching process models for tsetse populations only explicitly represent newly emerged adult female tsetse and use that subpopulation to keep track of population growth/decline. Here, we directly model other life stages. We analyse reproduction numbers and extinction probabilities and show that several previous models used for estimating extinction probabilities for tsetse populations are special cases of the current model. We confirm that the reproduction number is the same regardless of which life stage is counted, and show how the extinction probability depends on which life stage we start from. We demonstrate, and provide a biological explanation for, a simple relationship between extinction probabilities for the different life stages, based on the probability of recruitment between stages. These results offer insights into insect population dynamics and provide tools that will help with more detailed models of tsetse populations. Population dynamics studies of insects should be clear about life stages and counting points.
Identifiants
pubmed: 34337694
doi: 10.1007/s11538-021-00924-1
pii: 10.1007/s11538-021-00924-1
pmc: PMC8326244
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
94Informations de copyright
© 2021. The Author(s).
Références
Front Microbiol. 2016 Dec 22;7:2085
pubmed: 28066398
Med Vet Entomol. 2003 Sep;17(3):272-9
pubmed: 12941011
PLoS Negl Trop Dis. 2020 May 7;14(5):e0007769
pubmed: 32379749
Annu Rev Entomol. 1998;43:519-43
pubmed: 9444756
Med Vet Entomol. 1988 Jul;2(3):203-17
pubmed: 2980177
PLoS One. 2017 Oct 18;12(10):e0185809
pubmed: 29045418
J Econ Entomol. 2012 Oct;105(5):1477-86
pubmed: 23156140
Math Biosci. 2005 Jul;196(1):39-64
pubmed: 15982675
PLoS Negl Trop Dis. 2017 Aug 30;11(8):e0005813
pubmed: 28854189
Trends Ecol Evol. 2010 Jun;25(6):345-53
pubmed: 20188434
Conserv Biol. 2016 Aug;30(4):754-62
pubmed: 26743786
PLoS Negl Trop Dis. 2019 Apr 9;13(4):e0006973
pubmed: 30964873
Philos Trans R Soc Lond B Biol Sci. 2014 May 12;369(1645):20130432
pubmed: 24821918
Nat Rev Microbiol. 2004 Mar;2(3):186-7
pubmed: 15751187
Bull Entomol Res. 2005 Feb;95(1):13-21
pubmed: 15705210
PLoS Med. 2018 Oct 22;15(10):e1002675
pubmed: 30346952
Prev Vet Med. 2013 Jul 1;110(3-4):290-303
pubmed: 23453892
Bull World Health Organ. 1963;28(5-6):811-23
pubmed: 13963757
Parasit Vectors. 2019 Jan 11;12(1):24
pubmed: 30635017
Biomed Res Int. 2016;2016:6201350
pubmed: 27034944
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10397-E10406
pubmed: 30322922
Ecol Modell. 2015 Oct 24;314:80-89
pubmed: 26309347
Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10735-40
pubmed: 10485895