Sensitivity and resolution improvement for in vivo magnetic resonance current-density imaging of the human brain.
acquisition-weighted in vivo brain imaging
current-induced magnetic field
magnetic resonance current-density imaging
navigators
spoiled multiecho-gradient echo
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
06
07
2021
received:
24
03
2021
accepted:
08
07
2021
pubmed:
3
8
2021
medline:
1
2
2022
entrez:
2
8
2021
Statut:
ppublish
Résumé
Magnetic resonance current-density imaging (MRCDI) combines MRI with low-intensity transcranial electrical stimulation (TES; 1-2 mA) to map current flow in the brain. However, usage of MRCDI is still hampered by low measurement sensitivity and image quality. Recently, a multigradient-echo-based MRCDI approach has been introduced that presently has the best-documented efficiency. This MRCDI approach has now been advanced in three directions and has been validated by phantom and in vivo experiments. First, the importance of optimum spoiling for brain imaging was verified. Second, the sensitivity and spatial resolution were improved by using acquisition weighting. Third, navigators were added as a quality control measure for tracking physiological noise. Combining these advancements, the optimized MRCDI method was tested by using 1 mA TES for two different injection profiles. For a session duration of 4:20 min, the new MRCDI method was able to detect TES-induced magnetic fields at a sensitivity level of 84 picotesla, representing a twofold efficiency increase against our original method. A comparison between measurements and simulations based on personalized head models showed a consistent increase in the coefficient of determination of ΔR The achieved sensitivity improvement is an important step from proof-of-concept studies toward a broader application of MRCDI in clinical and basic neuroscience research.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3131-3146Informations de copyright
© 2021 International Society for Magnetic Resonance in Medicine.
Références
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633-639.
Scott GC, Joy MLG, Armstrong RL, Henkelman RM. Sensitivity of magnetic-resonance current-density imaging. J Magn Reson. 1992;97:235-254.
Joy MLG. MR current density and conductivity imaging: the state of the art. In: Conf Proc IEEE Eng Med Biol Soc. Vol. 7. 2004. pp. 5315-5319.
Eyüboğlu BM. Magnetic resonance current density imaging. In: Akay M, ed. Wiley Encyclopedia of Biomedical Engineering. Vol. 4. Hoboken, New Jersey, United States: John Wiley & Sons, Inc; 2006, pp. 2147-2153.
Eyüboğlu BM. Magnetic resonance-electrical impedance tomography. In: Akay M, ed. Wiley Encyclopedia of Biomedical Engineering. Vol. 4. Hoboken, New Jersey, United States: John Wiley & Sons, Inc; 2006. pp. 2154-2162.
Sadleir RJ, Grant SC, Silver X, et al. Magnetic resonance electrical impedance tomography (MREIT) at 11 Tesla field strength. Preliminary Experimental Study. 2005;7:340-343.
Seo JK, Kwon O, Woo EJ. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging. J Phys Conf Ser. 2005;12:140-155.
Seo JK, Woo EJ. Magnetic resonance electrical impedance tomography. Soc Ind Appl Math. 2011;53:40-68.
Göksu C, Hanson LG, Siebner HR, Ehses P, Scheffler K, Thielscher A. Human in-vivo brain magnetic resonance current density imaging (MRCDI). Neuroimage. 2018;171:26-39.
Göksu C, Scheffler K, Ehses P, Hanson LG, Thielscher A. Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT). Magn Reson Med. 2018;79:748-760.
Sadleir R, Grant S, Zhang SU, et al. Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 T field strengths. Physiol Meas. 2005;26:875-884.
Hasanov KF, Ma AW, Yoon RS, Nachman AI, Joy ML. A new approach to current density impedance imaging. Conf Proc IEEE Eng Med Biol Soc [Internet]. 2004;2:1321-1324.
Birgül Ö, Eyüboğlu BM, Ider YZ. Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction. Phys Med Biol. 2003;48:3485-3504.
Sadighi M, Göksu C, Eyüboğlu BM. J-based magnetic resonance conductivity tensor imaging (MRCTI) at 3 T. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society-EMBC. 2014. pp. 1139-1142.
Ider YZ, Birgül Ö. Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography (MR-EIT). ELEKTRİK. 1998;6:215-225.
Oh SH, Il LB, Woo EJ, et al. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Phys Med Biol. 2003;48:3101-3116.
Oh SH, Lee B, Woo EJ, et al. Electrical conductivity images of biological tissue phantoms in MREIT. Physiol Meas. 2005;26:S279-S288.
Woo EJ, Seo JK. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging. Physiol Meas. 2008;29:R1-R26.
Minhas AS, Jeong WC, Kim YT, Han Y, Kim HJ, Woo EJ. Experimental performance evaluation of multi-echo ICNE pulse sequence in magnetic resonance electrical impedance tomography. Magn Reson Med. 2011;66:957-965.
Jeon K, Lee C, Kim H, Woo E. CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT). J Biomed Eng. 2009;30:279-287.
Han YQ, Meng ZJ, Jeong WC, et al. MREIT conductivity imaging of canine head using multi-echo pulse sequence. J Phys Conf Ser. 2010;224:012078.
Kim HJ, Oh TI, Kim YT, et al. In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system. Physiol Meas. 2008;29:1145-1155.
Jeong WC, Sajib SZK, Katoch N, Kim HJ, Kwon OI, Woo EJ. Anisotropic conductivity tensor imaging of in vivo canine brain using DT-MREIT. IEEE Trans Med Imaging. 2017;36:124-131.
Kim HJ, Jeong WC, Kim YT, et al. In vivo conductivity imaging of canine male pelvis using a 3T MREIT system. J Phys Conf Ser. 2010;224:4.
Jeong WC, Kim YT, Minhas AS, et al. In vivo conductivity imaging of human knee using 3 mA injection current in MREIT. J Phys Conf Ser. 2010;224:012148.
Meng Z, Sajib SZ, Chauhan M, et al. Improved conductivity image of human lower extremity using MREIT with chemical shift artifact correction. Biomed Eng Lett. 2012;2:62-68.
Kim HJ, Kim YT, Minhas AS, et al. In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment. IEEE Trans Med Imaging. 2009;28:1681-1687.
Kim YT, Minhas AS, Meng Z, Kim HJ, Woo EJ. Conductivity imaging of human lower extremity using MREIT with multi-echo pulse sequence and 3 mA imaging current. 8th Int. Symp. Noninvasive Funct. Source Imaging Brain Hear. 8th Int. Conf. Bioelectromagn. 2011, pp. 48-52.
Chauhan M, Indahlastari A, Kasinadhuni AK, Schar M, Mareci TH, Sadleir RJ. Low-frequency conductivity tensor imaging of the human head in vivo using DT-MREIT: first study. IEEE Trans Med Imaging. 2018;37:966-976.
Kasinadhuni AK, Indahlastari A, Chauhan M, Scär M, Mareci TH, Sadleir RJ. Imaging of current flow in the human head during transcranial electrical therapy. Brain Stimul. 2017;10:764-772.
Jog MV, Smith RX, Jann K, et al. In-vivo imaging of magnetic fields induced by transcranial direct current stimulation (tDCS) in human brain using MRI. Sci Rep. 2016;6:34385.
Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128:1774-1809.
Göksu C, Scheffler K, Siebner HR, Thielscher A, Hanson LG. The stray magnetic fields in magnetic resonance current density imaging (MRCDI). Eur J Med Phys. 2019;59:142-150.
Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000;43:682-690.
Lee H, Jeong WC, Kim HJ, Woo EJ, Park J. Alternating steady state free precession for estimation of current-induced magnetic flux density: a feasibility study. Magn Reson Med. 2016;75:2009-2019.
Jaynes ET. Matrix treatment of nuclear induction. Phys Rev. 1955;98:1099-1105.
Preibisch C, Deichmann R. Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med. 2009;61:125-135.
Nam HS, Kwon OI. Optimization of multiply acquired magnetic flux density B(z) using ICNE-Multiecho train in MREIT. Phys Med Biol. 2010;55:2743-2759.
Gregersen F, Göksu C, Schaefers G, Xue R, Thielscher A, Hanson LG. Safety evaluation of a new setup for transcranial electric stimulation during magnetic resonance imaging. Brain Stimul. 2021;14:488-497.
Pohmann R, von Kienlin M. Accurate phosphorus metabolite images of the human heart by 3D acquisition-weighted CSI. Magn Reson Med. 2001;45:817-826.
Budde J, Shajan G, Scheffler K, Pohmann R. Ultra-high resolution imaging of the human brain using acquisition-weighted imaging at 9.4T. Neuroimage. 2014;86:592-598.
Haase A, Frahm J, Hänicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985;30:341-344.
Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 2007;26:375-385.
Sadleir R, Grant S, Zhang SU, et al. Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 T field strengths. Physiol Meas. 2005;26:875-884.
Ida M, Wakayama T, Nielsen ML, Abe T, Grodzki DM. Quiet T1-weighted imaging using PETRA: initial clinical evaluation in intracranial tumor patients. J Magn Reson Imaging. 2015;41:447-453.
Nielsen JD, Madsen KH, Puonti O, et al. Automatic skull segmentation from MR images for realistic volume conductor models of the head: assessment of the state-of-the-art. Neuroimage. 2018;174:587-598.
Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. 2015. pp. 222-225.
Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage. 2011;54:234-243.
Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A. Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng. 2004;51:1586-1598.
Saturnino GB, Antunes A, Thielscher A. On the importance of electrode parameters for shaping electric field patterns generated by tDCS. Neuroimage. 2015;120:25-35.
Yazdanian H, Saturnino GB, Thielscher A, Knudsen K. Fast evaluation of the Biot-Savart integral using FFT for electrical conductivity imaging. J Comput Phys. 2020;411:1-7.
Park C, Il LB, Kwon OI. Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI. Phys Med Biol. 2007;52:3001-3013.
Jeong WC, Sajib SZK, Kim HJ, Kwon OI. Focused current density imaging using internal electrode in magnetic resonance electrical impedance tomography (MREIT). IEEE Trans Biomed Eng. 2014;61:1938-1946.
Eroğlu HH, Puonti O, Göksu C, et al. On the Reconstruction of Magnetic Resonance Current Density Images of the Human Brain: Pitfalls and Perspectives. bioRxiv. Cold Spring Harbor, NY, United States: Cold Spring Harbor Laboratory; 2021.
Puonti O, Van Leemput K, Saturnino GB, Siebner HR, Madsen KH, Thielscher A. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling. Neuroimage. 2020;219:117044.
Nam HS, Park C, Kwon OI. Non-iterative conductivity reconstruction algorithm using projected current density in MREIT. Phys Med Biol [Internet]. 2008;53:6947-6961.
Seo JK, Yoon J, Woo EJ, Kwon O. Reconstruction of conductivity and current density images using only one component of magnetic field measurements. IEEE Trans Biomed Eng. 2003;50:1121-1124.
Bieri O, Maderwald S, Ladd ME, Scheffler K. Balanced alternating steady-state elastography. Magn Reson Med. 2006;55:233-241.
Minhas AS, Member S, Woo EJ, Lee SY. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study. 2009;2276-2278.
Jog AMS, Jann K, Yan L, Yu H, Parra L, Narr K. Concurrent imaging of markers of current flow, brain-state and neurophysiological changes during tDCS Abstract. Front Neurosci. 2020;14:1-13.
Pohmann R, Speck O, Scheffler K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med. 2016;75:801-809.
Minhas AS, Chauhan M, Fu F, Sadleir R. Evaluation of magnetohydrodynamic effects in magnetic resonance electrical impedance tomography at ultra-high magnetic fields. Magn Reson Med. 2019;81:2264-2276.
Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med. 2016;75:63-81.