Two polyurethanases PueA and PueB are major extracellular lipases partly secreted by the mediation of their cognate ABC exporter AprDEF in Pseudomonas protegens Pf-5.

Pseudomonas protegens ABC exporter extracellular lipase polyurethanase subfamily I.3 lipase

Journal

Letters in applied microbiology
ISSN: 1472-765X
Titre abrégé: Lett Appl Microbiol
Pays: England
ID NLM: 8510094

Informations de publication

Date de publication:
Nov 2021
Historique:
revised: 18 07 2021
received: 26 04 2021
accepted: 22 07 2021
pubmed: 4 8 2021
medline: 3 11 2021
entrez: 3 8 2021
Statut: ppublish

Résumé

Two polyurethanases PueA and PueB from Pseudomonas protegens Pf-5 have been reported to have hydrolytic activity against synthetic p-nitrophenyl palmitate of lipase substrate, and PueA may play a more effective role in this activity. However, it is still unknown whether PueA and PueB play similar parts in the lipase activity against natural acylglycerols and achieve the extracellular secretion via their cognate ABC exporter AprDEF. In this study, we investigated these questions through the construction of four markerless deletion mutants in Pf5139 (Δupp derivative of Pf-5), two heterologous co-expression strains and their three control strains in lipase-free Escherichia coli BL21(DE3), and detected their lipase activities by the tributyrin plate assay and the liquid culture assay. The results showed that PueA and PueB, classified as subfamily I.3 lipases, are major extracellular lipases involved in the uptake of oil in Pf-5, and PueA plays a leading role in extracellular lipase activity. In addition, the extracellular secretion of PueA and PueB can be partly mediated via AprDEF in Pf-5 and BL21(DE3). Finally, PueA and PueB are also able to achieve the extracellular secretion without the assistance of AprDEF in Pf-5 and BL21(DE3).

Identifiants

pubmed: 34342880
doi: 10.1111/lam.13548
doi:

Substances chimiques

Bacterial Proteins 0
Lipase EC 3.1.1.3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

652-657

Subventions

Organisme : National Natural Science Foundation of China
ID : 31760534
Organisme : Natural Science Foundation of Jiangxi Province
ID : 20202BAB213022

Informations de copyright

© 2021 The Society for Applied Microbiology.

Références

Angkawidjaja, C. and Kanaya, S. (2006) Family I.3 lipase: bacterial lipases secreted by the type I secretion system. Cell Mol Life Sci 63, 2804-2817.
Arpigny, J.L. and Jaeger, K.E. (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343, 177-183.
Cai, X., Chen, S., Yang, H., Wang, W., Lin, L., Shen, Y., Wei, W. and Wei, D. (2016) Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1. Can J Microbiol 62, 588-599.
Chahiniana, H. and Sarda, L. (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16, 1149-1161.
Chandra, P., Enespa, Singh, R. and Arora, P.K. (2020) Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 19, 169.
Eom, G.T., Lee, S.H., Oh, Y.H., Choi, J.E., Park, S.J. and Song, J.K. (2014) Efficient extracellular production of type I secretion pathway-dependent Pseudomonas fluorescens lipase in recombinant Escherichia coli by heterologous ABC protein exporters. Biotechnol Lett 36, 2037-2042.
Fatima, S., Faryad, A., Ataa, A., Joyia, F.A. and Parvai, A. (2021) Microbial lipase production: a deep insight into the recent advances of lipase production and purification techniques. Biotechnol Appl Biochem 68, 445-458.
Hasan, F., Shah, A.A. and Hameed, A. (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39, 235-251.
Howard, G.T., Crother, B. and Vicknair, J. (2001) Cloning, nucleotide sequencing and characterization of a polyurethanase gene (pueB) from Pseudomonas chlororaphis. Int Biodeter Biodegr 47, 141-149.
Howard, G.T., Mackie, R.I., Cann, I.K.O., Ohene-Adjei, S., Aboudehen, K.S., Duos, B.G. and Childers, G.W. (2007) Effect of insertional mutations in the pueA and pueB genes encoding two polyurethanases in Pseudomonas chlororaphis contained within a gene cluster. J Appl Microbiol 103, 2074-2083.
Hung, C.S., Zingarelli, S., Nadeau, L.J., Biffinger, J.C., Drake, C.A., Crouch, A.L., Barlow, D., Russell, J.N. Jr et al. (2016) Carbon catabolite repression and Impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Appl Environ Microbiol 82, 6080-6090.
Jaeger, K.E., Dijkstra, B.W. and Reetz, M.T. (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53, 315-351.
Karakaş, F. and Arslanoğlu, A. (2020) Gene cloning, heterologous expression, and partial characterization of a novel cold-adapted subfamily I.3 lipase from Pseudomonas fluorescence KE38. Sci Rep 10, 22063.
Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M. and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176.
Langlois, P. and Howard, G.T. (2002) A single glycine-rich repeat of Pseudomonas chlororaphis Polyurethanase A mediates secretion of a GST fusion protein in Escherichia coli. Int Biodeter Biodegr 50, 121-126.
Loredo-Treviño, A., Gutiérrez-Sánchez, G., Rodríguez-Herrera, R. and Aguilar, C.N. (2012) Microbial enzymes involved in polyurethane biodegradation: a review. J Polym Environ 20, 258-265.
Mahajan, N. and Gupta, P. (2015) New insights into the microbial degradation of polyurethanes. RSC Adv 5, 41839-41854.
Nadeau, L.J., Barlow, D.E., Hung, C.S., Biffinger, J.C., Crouch, A.L., Hollomon, J.M., Ecker, C.D., Russell, J.N. Jr et al. (2021) Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases. Int Biodeter Biodegr 156, 105121.
Rosenau, F. and Jaeger, K.E. (2000) Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82, 1023-1032.
Ruiz, C. and Howard, G.T. (1999) Nucleotide sequencing of a polyurethanase gene (pulA) from Pseudomonas fluorescens. Int Biodeter Biodegr 44, 127-131.
Salgado, C.A., de Almeida, F.A., Barros, E., Baracat-Pereira, M.C., Baglinière, F. and Vanetti, M.C.D. (2021) Identification and characterization of a polyurethanase with lipase activity from Serratia liquefaciens isolated from cold raw cow's milk. Food Chem 337, 127954.
Stern, R.V. and Howard, G.T. (2000) The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiol Lett 185, 163-168.
Wang, X., Dai, S., Wang, Q., Xu, H., Shi, H., Kang, Y. and Zha, D. (2020) Efficient markerless gene deletions in Pseudomonas protegens Pf-5 using a upp-based counterselective system. Biotechnol Lett 42, 277-285.
Zha, D., Xu, L., Zhang, H. and Yan, Y. (2014) Molecular identification of lipase LipA from Pseudomonas protegens Pf-5 and characterization of two whole-cell biocatalysts Pf-5 and Top10lipA. J Microbiol Biotechnol 24, 619-628.

Auteurs

D-M Zha (DM)

School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China.

X-L Wang (XL)

School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China.

X-H Xiao (XH)

School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China.

H-Q Shi (HQ)

School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China.

Y-W Yang (YW)

School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China.

X Shi (X)

School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China.

Y-B Kang (YB)

School of Nursing, Jiujiang University, Jiujiang, China.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Female Biofilms Animals Lactobacillus Mice

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli

Classifications MeSH