Sleep Problems in Preschoolers With Autism Spectrum Disorder Are Associated With Sensory Sensitivities and Thalamocortical Overconnectivity.
Autism spectrum disorder
Functional connectivity
Sensory processing
Sleep
Thalamus
Journal
Biological psychiatry. Cognitive neuroscience and neuroimaging
ISSN: 2451-9030
Titre abrégé: Biol Psychiatry Cogn Neurosci Neuroimaging
Pays: United States
ID NLM: 101671285
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
16
03
2021
revised:
08
07
2021
accepted:
21
07
2021
pubmed:
4
8
2021
medline:
11
1
2023
entrez:
3
8
2021
Statut:
ppublish
Résumé
Projections between the thalamus and sensory cortices are established early in development and play an important role in regulating sleep as well as in relaying sensory information to the cortex. Atypical thalamocortical functional connectivity frequently observed in children with autism spectrum disorder (ASD) might therefore be linked to sensory and sleep problems common in ASD. Here, we investigated the relationship between auditory-thalamic functional connectivity measured during natural sleep functional magnetic resonance imaging, sleep problems, and sound sensitivities in 70 toddlers and preschoolers (1.5-5 years old) with ASD compared with a matched group of 46 typically developing children. In children with ASD, sleep problems and sensory sensitivities were positively correlated, and increased sleep latency was associated with overconnectivity between the thalamus and auditory cortex in a subsample with high-quality magnetic resonance imaging data (n = 29). In addition, auditory cortex blood oxygen level-dependent signal amplitude was elevated in children with ASD, potentially reflecting reduced sensory gating or a lack of auditory habituation during natural sleep. These findings indicate that atypical thalamocortical functional connectivity can be detected early in development and may play a crucial role in sleep problems and sensory sensitivities in ASD.
Sections du résumé
BACKGROUND
Projections between the thalamus and sensory cortices are established early in development and play an important role in regulating sleep as well as in relaying sensory information to the cortex. Atypical thalamocortical functional connectivity frequently observed in children with autism spectrum disorder (ASD) might therefore be linked to sensory and sleep problems common in ASD.
METHODS
Here, we investigated the relationship between auditory-thalamic functional connectivity measured during natural sleep functional magnetic resonance imaging, sleep problems, and sound sensitivities in 70 toddlers and preschoolers (1.5-5 years old) with ASD compared with a matched group of 46 typically developing children.
RESULTS
In children with ASD, sleep problems and sensory sensitivities were positively correlated, and increased sleep latency was associated with overconnectivity between the thalamus and auditory cortex in a subsample with high-quality magnetic resonance imaging data (n = 29). In addition, auditory cortex blood oxygen level-dependent signal amplitude was elevated in children with ASD, potentially reflecting reduced sensory gating or a lack of auditory habituation during natural sleep.
CONCLUSIONS
These findings indicate that atypical thalamocortical functional connectivity can be detected early in development and may play a crucial role in sleep problems and sensory sensitivities in ASD.
Identifiants
pubmed: 34343726
pii: S2451-9022(21)00202-0
doi: 10.1016/j.bpsc.2021.07.008
pmc: PMC9826645
mid: NIHMS1861912
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
21-31Subventions
Organisme : NIMH NIH HHS
ID : R01 MH107802
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2021 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Références
J Pineal Res. 2009 Jan;46(1):1-7
pubmed: 18761566
Nat Neurosci. 2011 Jul 31;14(9):1189-94
pubmed: 21804538
Int J Dev Neurosci. 2011 May;29(3):193-205
pubmed: 20883772
Am J Occup Ther. 2008 Jul-Aug;62(4):393-406
pubmed: 18712002
Cereb Cortex. 2021 Jul 29;31(9):4191-4205
pubmed: 33866373
Dev Neurosci. 2017;39(1-4):171-181
pubmed: 28434006
JAMA Psychiatry. 2015 Aug;72(8):767-77
pubmed: 26061743
Front Psychiatry. 2019 Apr 16;10:252
pubmed: 31057443
Sci Transl Med. 2013 Feb 20;5(173):173ra24
pubmed: 23427244
Brain Res. 2006 Aug 9;1104(1):160-74
pubmed: 16828063
Science. 2013 Jun 28;340(6140):1591-4
pubmed: 23812718
J Neurosci. 2017 Jun 7;37(23):5594-5607
pubmed: 28450543
Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 Jan;4(1):39-49
pubmed: 30292808
Nat Neurosci. 2019 Oct;22(10):1624-1634
pubmed: 31551593
Sci Transl Med. 2019 Feb 27;11(481):
pubmed: 30814340
J Cogn Neurosci. 2008 Jan;20(1):108-19
pubmed: 18095789
Neuron. 2014 May 7;82(3):695-708
pubmed: 24811386
JAMA Psychiatry. 2015 Aug;72(8):778-86
pubmed: 26061819
Sci Rep. 2017 Jan 09;7:39286
pubmed: 28067865
Neuroimage. 2006 Jan 15;29(2):475-84
pubmed: 16115783
Neurosci Biobehav Rev. 2018 Apr;87:106-117
pubmed: 29408312
Schizophr Res. 2020 Apr;218:93-98
pubmed: 32061454
Nat Genet. 2019 Mar;51(3):431-444
pubmed: 30804558
Front Neuroanat. 2019 Apr 16;13:41
pubmed: 31040772
J Neurosci Methods. 2008 Jul 15;172(1):137-41
pubmed: 18501969
Cereb Cortex. 2019 Mar 1;29(3):1218-1229
pubmed: 29425270
JAMA Psychiatry. 2015 May;72(5):415-23
pubmed: 25738232
Front Hum Neurosci. 2013 Oct 22;7:671
pubmed: 24155705
Sci Rep. 2019 Feb 27;9(1):2952
pubmed: 30814558
Neuropathol Appl Neurobiol. 2016 Feb;42(2):115-34
pubmed: 25630827
Brain Cogn. 2018 Jun;123:110-119
pubmed: 29550506
J Clin Psychiatry. 2018 Jan/Feb;79(1):
pubmed: 29325234
Am J Perinatol. 2017 Feb;34(3):295-304
pubmed: 28099978
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12602-12607
pubmed: 29114043
Pediatrics. 2012 Nov;130 Suppl 2:S83-90
pubmed: 23118258
Sleep Med. 2012 Apr;13(4):447-9
pubmed: 22437140
Sleep. 2020 Jun 15;43(6):
pubmed: 31848619
Front Neuroanat. 2009 Aug 20;3:16
pubmed: 19738926
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20
pubmed: 21041625
Sleep. 2014 Feb 01;37(2):387-97
pubmed: 24497667
Autism. 2012 Mar;16(2):139-50
pubmed: 21478225
Annu Rev Neurosci. 2010;33:23-48
pubmed: 20201645
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3555-60
pubmed: 23401504
Pediatrics. 2018 Sep;142(3):
pubmed: 30076190
N Engl J Med. 2014 Mar 27;370(13):1209-1219
pubmed: 24670167
Pediatrics. 2019 Mar;143(3):
pubmed: 30745433
Curr Opin Neurobiol. 2002 Feb;12(1):14-25
pubmed: 11861160
Clin Neurophysiol. 2003 Sep;114(9):1671-80
pubmed: 12948796
Neuroscience. 2019 Jun 1;408:58-67
pubmed: 30930130
Front Hum Neurosci. 2014 Oct 22;8:852
pubmed: 25374531
Hum Brain Mapp. 2015 Nov;36(11):4497-511
pubmed: 26493162
Arch Dis Child. 2014 Feb;99(2):114-8
pubmed: 24061777
Am J Psychiatry. 2012 Oct;169(10):1092-9
pubmed: 23032387
Am J Psychiatry. 2020 Jun 1;177(6):518-525
pubmed: 32375538
Autism Res. 2019 Mar;12(3):384-400
pubmed: 30624021
Sleep Med Rev. 2009 Dec;13(6):403-11
pubmed: 19398354
J Clin Med. 2018 May 03;7(5):
pubmed: 29751511
J Child Psychol Psychiatry. 2015 Sep;56(9):988-98
pubmed: 25921776
Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Jan;2(1):76-84
pubmed: 28584881
Transl Psychiatry. 2019 Jan 30;9(1):46
pubmed: 30700699
Front Psychiatry. 2019 Jun 06;10:366
pubmed: 31244687
Magn Reson Med. 2010 Jan;63(1):91-105
pubmed: 20027635
Nat Genet. 2016 Nov;48(11):1359-1369
pubmed: 27668656
Elife. 2015 Nov 09;4:
pubmed: 26551562
Brain. 2013 Jun;136(Pt 6):1942-55
pubmed: 23739917
Brain Imaging Behav. 2018 Jun;12(3):640-652
pubmed: 28444556
Am J Psychiatry. 2019 Dec 1;176(12):1010-1020
pubmed: 31230465
Mol Autism. 2017 Mar 4;8:8
pubmed: 28316772
Dev Cogn Neurosci. 2018 Jan;29:117-126
pubmed: 28223033
Science. 1993 Oct 29;262(5134):679-85
pubmed: 8235588
J Neurosci. 2010 Aug 25;30(34):11379-87
pubmed: 20739559
J Neurosci. 2003 Apr 15;23(8):3308-15
pubmed: 12716938
Front Neuroanat. 2018 Nov 14;12:97
pubmed: 30487739
Cell Rep. 2017 Jan 31;18(5):1100-1108
pubmed: 28147267
Front Psychiatry. 2017 Jan 04;7:205
pubmed: 28101064
J Neurosci. 2014 Jul 2;34(27):9067-75
pubmed: 24990927
Neuroimage. 2010 Jan 15;49(2):1432-45
pubmed: 19782143
JAMA. 2017 Sep 26;318(12):1182-1184
pubmed: 28973605
Mol Autism. 2018 Mar 27;9:22
pubmed: 29610657
Neuroimage. 2016 Jan 15;125:657-667
pubmed: 26499809
BMC Biol. 2020 Sep 16;18(1):125
pubmed: 32938458
Neuroimage. 2012 Oct 15;63(1):63-72
pubmed: 22743197
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6485-90
pubmed: 25941391
PLoS One. 2017 Nov 17;12(11):e0188122
pubmed: 29149191
Nat Neurosci. 2008 Jun;11(6):683-92
pubmed: 18488023
Neuroimage Clin. 2016 Jul 22;12:300-5
pubmed: 27551667
Front Syst Neurosci. 2015 Nov 16;9:158
pubmed: 26635548
Autism. 2019 Apr;23(3):783-791
pubmed: 29950101
Autism Res. 2017 May;10(5):801-809
pubmed: 27896947
Trends Neurosci. 2020 May;43(5):326-342
pubmed: 32353336
Acta Paediatr. 2010 Aug;99(8):1119-27
pubmed: 20367617
Pediatr Clin North Am. 2011 Jun;58(3):685-98
pubmed: 21600349
Autism. 2020 Jan;24(1):121-134
pubmed: 31132855
J Neurosci. 2017 Dec 6;37(49):11912-11929
pubmed: 29089437
Neuroimage. 2017 Feb 15;147:678-691
pubmed: 28041978
J Am Acad Child Adolesc Psychiatry. 2011 May;50(5):499-507
pubmed: 21515199
Ear Hear. 2006 Aug;27(4):430-41
pubmed: 16825892
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1743-8
pubmed: 15677322
Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 Aug;4(8):706-714
pubmed: 31262708
JAMA Psychiatry. 2019 Oct 1;76(10):1035-1043
pubmed: 31314057
Neurology. 2018 Jul 10;91(2):e112-e122
pubmed: 29875224
Mol Psychiatry. 2018 Apr;23(4):1001-1013
pubmed: 28322282
Science. 2003 Jul 25;301(5632):521-5
pubmed: 12881571
J Sleep Res. 2008 Jun;17(2):197-206
pubmed: 18482108
Science. 2020 Oct 16;370(6514):
pubmed: 33060328
Sleep Med. 2010 Aug;11(7):659-64
pubmed: 20605110
JAMA Psychiatry. 2019 Jun 1;76(6):594-602
pubmed: 30840048
Nat Rev Neurosci. 2015 Mar;16(3):133-46
pubmed: 25697157
Neurosci Biobehav Rev. 2018 Sep;92:276-290
pubmed: 29935204