Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach.


Journal

Computers in biology and medicine
ISSN: 1879-0534
Titre abrégé: Comput Biol Med
Pays: United States
ID NLM: 1250250

Informations de publication

Date de publication:
08 2021
Historique:
received: 28 01 2021
revised: 12 07 2021
accepted: 13 07 2021
pubmed: 5 8 2021
medline: 7 9 2021
entrez: 4 8 2021
Statut: ppublish

Résumé

COVID-19 is an infectious and pathogenic viral disease caused by SARS-CoV-2 that leads to septic shock, coagulation dysfunction, and acute respiratory distress syndrome. The spreading rate of SARS-CoV-2 is higher than MERS-CoV and SARS-CoV. The receptor-binding domain (RBD) of the Spike-protein (S-protein) interacts with the human cells through the host angiotensin-converting enzyme 2 (ACE2) receptor. However, the molecular mechanism of pathological mutations of S-protein is still unclear. In this perspective, we investigated the impact of mutations in the S-protein and their interaction with the ACE2 receptor for SAR-CoV-2 viral infection. We examined the stability of pathological nonsynonymous mutations in the S-protein, and the binding behavior of the ACE2 receptor with the S-protein upon nonsynonymous mutations using the molecular docking and MM_GBSA approaches. Using the extensive bioinformatics pipeline, we screened the destabilizing (L8V, L8W, L18F, Y145H, M153T, F157S, G476S, L611F, A879S, C1247F, and C1254F) and stabilizing (H49Y, S50L, N501Y, D614G, A845V, and P1143L) nonsynonymous mutations in the S-protein. The docking and binding free energy (ddG) scores revealed that the stabilizing nonsynonymous mutations show increased interaction between the S-protein and the ACE2 receptor compared to native and destabilizing S-proteins and that they may have been responsible for the virulent high level. Further, the molecular dynamics simulation (MDS) approach reveals the structural transition of mutants (N501Y and D614G) S-protein. These insights might help researchers to understand the pathological mechanisms of the S-protein and provide clues regarding mutations in viral infection and disease propagation. Further, it helps researchers to develop an efficient treatment approach against this SARS-CoV-2 pandemic.

Identifiants

pubmed: 34346317
pii: S0010-4825(21)00448-0
doi: 10.1016/j.compbiomed.2021.104654
pmc: PMC8282961
pii:
doi:

Substances chimiques

Spike Glycoprotein, Coronavirus 0
Peptidyl-Dipeptidase A EC 3.4.15.1
Angiotensin-Converting Enzyme 2 EC 3.4.17.23

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

104654

Informations de copyright

Copyright © 2021. Published by Elsevier Ltd.

Références

Nature. 2020 Mar;579(7798):270-273
pubmed: 32015507
BMC Bioinformatics. 2013;14 Suppl 2:S5
pubmed: 23369171
Biophys J. 2021 Mar 16;120(6):1072-1084
pubmed: 33189680
Gene. 2013 Jan 15;513(1):184-95
pubmed: 23085273
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734
pubmed: 32376634
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10
pubmed: 17517781
J Chem Inf Model. 2021 Dec 27;61(12):6079-6084
pubmed: 34806876
Nature. 2020 Jul;583(7816):459-468
pubmed: 32353859
Acta Pharm Sin B. 2020 May;10(5):766-788
pubmed: 32292689
Science. 1987 Jan 30;235(4788):569-71
pubmed: 3810155
J Hum Genet. 2020 Jul;65(7):569-575
pubmed: 32372051
Med Drug Discov. 2021 Jun;10:100086
pubmed: 33681755
Phys Chem Chem Phys. 2016 Aug 10;18(32):22129-39
pubmed: 27444142
Front Microbiol. 2020 Jul 22;11:1800
pubmed: 32793182
Sci Rep. 2021 Mar 25;11(1):6927
pubmed: 33767306
Nucleic Acids Res. 2017 Jul 3;45(W1):W229-W235
pubmed: 28525590
J Mol Graph Model. 2021 Sep;107:107949
pubmed: 34089985
Nat Med. 2020 Apr;26(4):450-452
pubmed: 32284615
J Biomol Struct Dyn. 2022 Sep;40(14):6545-6555
pubmed: 33583326
J Phys Chem B. 2021 Jul 8;125(26):7101-7107
pubmed: 34110159
Elife. 2021 Feb 11;10:
pubmed: 33570490
Nat Rev Microbiol. 2009 Mar;7(3):226-36
pubmed: 19198616
Quant Biol. 2020;8(1):11-19
pubmed: 32219006
ACS Nano. 2021 Apr 27;15(4):6929-6948
pubmed: 33733740
Cell. 2020 Aug 20;182(4):812-827.e19
pubmed: 32697968
Clin Infect Dis. 2020 Jul 28;71(15):713-720
pubmed: 32129843
Sci Rep. 2020 Aug 20;10(1):14031
pubmed: 32820179
BMC Bioinformatics. 2008 Jan 23;9:40
pubmed: 18215316
J Cell Biochem. 2019 Oct;120(10):18496-18508
pubmed: 31211457
Comput Struct Biotechnol J. 2020;18:2573-2582
pubmed: 32983400
Adv Protein Chem Struct Biol. 2016;102:181-224
pubmed: 26827606
J Proteome Res. 2021 Feb 5;20(2):1178-1189
pubmed: 33393786
Proteins. 2002 Jun 1;47(4):409-43
pubmed: 12001221
Cell Biochem Biophys. 2014 Jan;68(1):97-109
pubmed: 23824587
Proteins. 1993 Dec;17(4):412-25
pubmed: 8108382
J Mol Biol. 1994 May 20;238(5):777-93
pubmed: 8182748
J Chem Theory Comput. 2009 Apr 14;5(4):1038-50
pubmed: 26609613
Brief Bioinform. 2001 May;2(2):195-7
pubmed: 11465736
Comput Biol Med. 2021 Aug;135:104555
pubmed: 34144270
Euro Surveill. 2020 Jan;25(4):
pubmed: 32019669
Cell Biochem Biophys. 2013 Nov;67(2):623-33
pubmed: 23494262
Cell Discov. 2020 Mar 16;6:14
pubmed: 32194980
Bioinformatics. 2018 Dec 1;34(23):4121-4123
pubmed: 29790939
J Mol Biol. 2016 Feb 22;428(4):720-725
pubmed: 26410586
Science. 2020 Sep 25;369(6511):1586-1592
pubmed: 32694201
Bioimpacts. 2021;11(1):65-84
pubmed: 33469510
Acta Crystallogr D Biol Crystallogr. 2002 Jun;58(Pt 6 No 1):899-907
pubmed: 12037327
Phys Chem Chem Phys. 2014 Aug 21;16(31):16719-29
pubmed: 24999761
Proteins. 2003 Jul 1;52(1):2-9
pubmed: 12784359
Science. 1996 Apr 26;272(5261):535-7
pubmed: 8614800
J Biomol NMR. 1996 Dec;8(4):477-86
pubmed: 9008363
FEBS Lett. 2021 May;595(10):1454-1461
pubmed: 33728680
Cell Host Microbe. 2020 Mar 11;27(3):325-328
pubmed: 32035028
Nucleic Acids Res. 2019 Jul 2;47(W1):W322-W330
pubmed: 31106357
Mol Biotechnol. 2021 May;63(5):389-409
pubmed: 33625681
Biomed Res Int. 2013;2013:697051
pubmed: 23862152
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W239-42
pubmed: 16845001
J Cell Physiol. 2021 Oct;236(10):7045-7057
pubmed: 33755190
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12
pubmed: 25348405
J Biomol Struct Dyn. 2021 Sep;39(14):5235-5247
pubmed: 32619131
J Biol Chem. 2004 Apr 23;279(17):17996-8007
pubmed: 14754895
J Chem Inf Model. 2011 Jan 24;51(1):69-82
pubmed: 21117705
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W314-9
pubmed: 24829462
Life Sci. 2016 Dec 1;166:108-120
pubmed: 27744054
J Chem Inf Model. 2011 Oct 24;51(10):2778-86
pubmed: 21919503
Cell Mol Immunol. 2020 May;17(5):555-557
pubmed: 32235915
PLoS One. 2015 Aug 05;10(8):e0134638
pubmed: 26244575
Proteins. 2006 Mar 1;62(4):1125-32
pubmed: 16372356
Microbes Infect. 2020 Mar;22(2):69-71
pubmed: 32032682
Nat Methods. 2017 Jan;14(1):71-73
pubmed: 27819658
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W306-10
pubmed: 15980478
Nat Commun. 2021 Feb 8;12(1):848
pubmed: 33558493
Cell. 2020 May 14;181(4):894-904.e9
pubmed: 32275855
Genomics. 2020 Sep;112(5):3588-3596
pubmed: 32353474

Auteurs

Reem Y Aljindan (RY)

Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. Electronic address: raljindan@iau.edu.sa.

Abeer M Al-Subaie (AM)

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. Electronic address: amnalsubaie@iau.edu.sa.

Ahoud I Al-Ohali (AI)

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. Electronic address: aalohali@iau.edu.sa.

Thirumal Kumar D (T)

Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, 600078, India. Electronic address: thirumalkumar.d@gmail.com.

George Priya Doss C (GP)

School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India. Electronic address: georgepriyadoss@vit.ac.in.

Balu Kamaraj (B)

Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia. Electronic address: bkranganayaki@iau.edu.sa.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH