Activity detection and classification from wristband accelerometer data collected on people with type 1 diabetes in free-living conditions.
Artificial pancreas
Automated insulin delivery
Free-living conditions
Physical activity
Supervised learning
Type 1 diabetes mellitus
Wearable devices
Wrist-worn accelerometer
Journal
Computers in biology and medicine
ISSN: 1879-0534
Titre abrégé: Comput Biol Med
Pays: United States
ID NLM: 1250250
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
20
11
2020
revised:
18
06
2021
accepted:
04
07
2021
pubmed:
5
8
2021
medline:
14
9
2021
entrez:
4
8
2021
Statut:
ppublish
Résumé
This paper introduces methods to estimate aspects of physical activity and sedentary behavior from three-axis accelerometer data collected with a wrist-worn device at a sampling rate of 32 [Hz] on adults with type 1 diabetes (T1D) in free-living conditions. In particular, we present two methods able to detect and grade activity based on its intensity and individual fitness as sedentary, mild, moderate or vigorous, and a method that performs activity classification in a supervised learning framework to predict specific user behaviors. Population results for activity level grading show multi-class average accuracy of 99.99%, precision of 98.0 ± 2.2%, recall of 97.9 ± 3.5% and F1 score of 0.9 ± 0.0. As for the specific behavior prediction, our best performing classifier, gave population multi-class average accuracy of 92.43 ± 10.32%, precision of 92.94 ± 9.80%, recall of 92.20 ± 10.16% and F1 score of 92.56 ± 9.94%. Our investigation showed that physical activity and sedentary behavior can be detected, graded and classified with good accuracy and precision from three-axial accelerometer data collected in free-living conditions on people with T1D. This is particularly significant in the context of automated glucose control systems for diabetes, in that the methods we propose have the potential to inform changes in treatment parameters in response to the intensity of physical activity, allowing patients to meet their glycemic targets.
Identifiants
pubmed: 34346318
pii: S0010-4825(21)00427-3
doi: 10.1016/j.compbiomed.2021.104633
pmc: PMC8577986
mid: NIHMS1723645
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
104633Subventions
Organisme : NIDDK NIH HHS
ID : DP3 DK113511
Pays : United States
Informations de copyright
Copyright © 2021 Elsevier Ltd. All rights reserved.
Références
Sensors (Basel). 2010;10(2):1154-75
pubmed: 22205862
IEEE Sens J. 2020 Nov;20(21):12859-12870
pubmed: 33100923
Diabetes Technol Ther. 2018 Oct;20(10):662-671
pubmed: 30188192
Med Sci Sports Exerc. 2014 Feb;46(2):386-97
pubmed: 23860415
Diabetes Technol Ther. 2013 May;15(5):386-400
pubmed: 23544672
Diabetes Technol Ther. 2017 Mar;19(3):155-163
pubmed: 28134564
Front Endocrinol (Lausanne). 2014 Dec 01;5:205
pubmed: 25520703
Diabetes Care. 2008 Nov;31(11):2108-9
pubmed: 18689694
JAMA. 2016 Oct 4;316(13):1407-1408
pubmed: 27629148
J Diabetes Sci Technol. 2015 Oct 06;9(6):1200-7
pubmed: 26443291
Diabetes Care. 2018 Jan;41(Suppl 1):S38-S50
pubmed: 29222375
IEEE Trans Biomed Eng. 2014 Mar;61(3):883-91
pubmed: 24557689
Lancet Diabetes Endocrinol. 2017 May;5(5):377-390
pubmed: 28126459
J Diabetes Sci Technol. 2015 Oct 05;9(6):1175-84
pubmed: 26438720
Diabetes Technol Ther. 2019 Jan;21(1):35-43
pubmed: 30547670
J Appl Physiol (1985). 2015 Aug 15;119(4):396-403
pubmed: 26112238
Diabetes Care. 2014;37(5):1184-90
pubmed: 24757225
IEEE Trans Inf Technol Biomed. 2008 Jan;12(1):20-6
pubmed: 18270033
IEEE J Biomed Health Inform. 2018 May;22(3):686-696
pubmed: 28410113
Can J Diabetes. 2016 Dec;40(6):503-508
pubmed: 27212045
J Diabetes Sci Technol. 2015 Jun 30;9(6):1236-45
pubmed: 26134831
Diabetes Care. 2003 May;26(5):1553-79
pubmed: 12716821
Diabetes Technol Ther. 2014 Jun;16(6):331-7
pubmed: 24811269
IEEE Trans Biomed Eng. 2014 Jun;61(6):1780-6
pubmed: 24691526
Med Sci Sports Exerc. 2016 May;48(5):933-40
pubmed: 26673126