Effect of lgals3a on embryo development of zebrafish.
Galectin-3
Wnt/β-catenin signaling pathway
Zebrafish
lgals3a
Journal
Transgenic research
ISSN: 1573-9368
Titre abrégé: Transgenic Res
Pays: Netherlands
ID NLM: 9209120
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
02
03
2021
accepted:
27
07
2021
pubmed:
5
8
2021
medline:
3
5
2022
entrez:
4
8
2021
Statut:
ppublish
Résumé
Our study was aimed to investigate the effects of lgals3a (Gal-3 encoding gene) on the development of zebrafish embryo and its underlying mechanisms. Morpholino (MO) technology was used to inhibit the expression of zebrafish lgals3a, and the effect of lgals3a gene knockdown on zebrafish embryo development and the number of monocyte macrophages was observed. Effect of lgals3a-e3i3-MO on apoptosis of zebrafish was detected by acridine orange staining. In addition, the mRNA expression levels of Wnt/β-catenin signaling pathway-related genes were detected by RT-qPCR. Compared with control-MO group, the zebrafish embryos injected with lgals3a-e3i3-MO had obvious defects in the head, eyes, and tail, and pericardial edema. Lgals3a-e3i3-MO significantly reduced the number of mononuclear macrophages in zebrafish embryos compared with the control-MO group. The results of acridine orange staining showed that compared with the control-MO group, lgals3a-e3i3-MO promoted cardiomyocyte apoptosis in zebrafish. Furthermore, lgals3a-e3i3-MO significantly up-regulated the expression of dkk1b, wnt9a, lrp5, fzd7a, β-catenin, Gsk-3β, mycn, myca in the Wnt/β-catenin pathway, and decreased the expression of lef1. These results indicate that lgals3a-e3i3-MO inhibits zebrafish embryo development, reduces the number of mononuclear macrophages, activates Wnt/β-catenin signaling pathway and promotes cardiomyocyte apoptosis.
Identifiants
pubmed: 34347236
doi: 10.1007/s11248-021-00276-5
pii: 10.1007/s11248-021-00276-5
doi:
Substances chimiques
Receptors, Cell Surface
0
Wnt Proteins
0
Wnt9a protein, zebrafish
0
Zebrafish Proteins
0
beta Catenin
0
fzd7a protein, zebrafish
0
Glycogen Synthase Kinase 3 beta
EC 2.7.11.1
Acridine Orange
F30N4O6XVV
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
739-750Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Ahmed H, Du SJ, O’Leary N, Vasta GR (2004) Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific expression of a prototype galectin during early embryogenesis. Glycobiology 14:219–232. https://doi.org/10.1093/glycob/cwh032
doi: 10.1093/glycob/cwh032
pubmed: 14693912
Baptiste TA, James A, Saria M, Ochieng J (2007) Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp Cell Res 313:652–664. https://doi.org/10.1016/j.yexcr.2006.11.005
doi: 10.1016/j.yexcr.2006.11.005
pubmed: 17184769
Basu S, Sachidanandan C (2013) Zebrafish: a multifaceted tool for chemical biologists. Chem Rev 113:7952–7980. https://doi.org/10.1021/cr4000013
doi: 10.1021/cr4000013
pubmed: 23819893
Blanchard H, Yu X, Collins PM, Bum-Erdene K (2014) Galectin-3 inhibitors: a patent review (2008–present). Expert Opin Ther Pat 24:1053–1065. https://doi.org/10.1517/13543776.2014.947961
doi: 10.1517/13543776.2014.947961
pubmed: 25109359
Clevers H (2006) Wnt/ beta-catenin signaling in development and disease. Cell 127:469–480. https://doi.org/10.1016/j.cell.2006.10.018
doi: 10.1016/j.cell.2006.10.018
pubmed: 17081971
Colnot C, Ripoche M, Milon G, Montagutelli X, Poirier F (2010) Maintenance of granulocyte numbers during acute peritonitis is defective in galectinnull mutant mice. Immunology 94:290–296. https://doi.org/10.1046/j.1365-2567.1998.00517.x
doi: 10.1046/j.1365-2567.1998.00517.x
De Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, Bakker SJL, van der Harst P (2012) The fibrosis marker galectin-3 and outcome in the general population. J Intern Med 272:55–64. https://doi.org/10.1111/j.1365-2796.2011.02476.x
doi: 10.1111/j.1365-2796.2011.02476.x
pubmed: 22026577
Ebrahim AH, Alalawi Z, Mirandola L, Rakhshanda R, Dahlbeck S, Nguyen D, Jenkins M, Grizzi F, Cobos E, Figueroa JA, Chiriva-Internati M (2014) Galectins in cancer: carcinogenesis, diagnosis and therapy. Ann Transl Med 2:88. https://doi.org/10.3978/j.issn.2305-5839.2014.09.12
doi: 10.3978/j.issn.2305-5839.2014.09.12
pubmed: 25405163
pmcid: 4205868
Fairbairn EA, Bonthius J, Cherr GN (2012) Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal-ventral axis determination via the Wnt/β-catenin signaling pathway in zebrafish embryos. Aquat Toxicol 124–125:188–196. https://doi.org/10.1016/j.aquatox.2012.08.017
doi: 10.1016/j.aquatox.2012.08.017
pubmed: 22975441
Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavão MS (2014) Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 4:138. https://doi.org/10.3389/fonc.2014.00138
doi: 10.3389/fonc.2014.00138
pubmed: 24982845
pmcid: 4058817
Glinskii OV, Sud S, Mossine VV, Mawhinney TP, Anthony DC, Glinsky GV, Pienta KJ, Glinsky VV (2012) Inhibition of prostate cancer bone metastasis by synthetic TF antigen mimic/galectin-3 inhibitor lactulose-L-leucine. Neoplasia 14:65–73. https://doi.org/10.1593/neo.111544
doi: 10.1593/neo.111544
pubmed: 22355275
pmcid: 3281943
Henderson NC, Sethi T (2009) The regulation of inflammation by galectin-3. Immunol Rev 230:160–171. https://doi.org/10.1111/j.1600-065X.2009.00794.x
doi: 10.1111/j.1600-065X.2009.00794.x
pubmed: 19594635
Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J 17:1371–1384. https://doi.org/10.1093/emboj/17.5.1371
doi: 10.1093/emboj/17.5.1371
pubmed: 9482734
pmcid: 1170485
Klyosov AA, Traber PG (2012) Galectins in disease and potential therapeutic approaches. In: Galectins and disease implications for targeted therapeutics. ACS Publications, pp 3–43. https://doi.org/10.1021/bk-2012-1115.ch001
MacKinnon AC, Liu X, Hadoke PW, Miller MR, Newby DE, Sethi T (2013) Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology 23:654–663. https://doi.org/10.1093/glycob/cwt006
doi: 10.1093/glycob/cwt006
pubmed: 23426722
pmcid: 3641797
Nachtigal M, Ghaffar A, Mayer EP (2008) Galectin-3 Gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am J Pathol 172:247–255. https://doi.org/10.2353/ajpath.2008.070348
doi: 10.2353/ajpath.2008.070348
pubmed: 18156214
pmcid: 2189631
Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220. https://doi.org/10.1038/79951
doi: 10.1038/79951
pubmed: 11017081
Nelson WJ, Nusse R (2004) Convergence of Wnt, ß-catenin, and cadherin pathways. Science 303:1483–1487. https://doi.org/10.1126/science.1094291
doi: 10.1126/science.1094291
pubmed: 15001769
pmcid: 3372896
Newlaczyl AU, Yu L-G (2011) Galectin-3–a jack-of-all-trades in cancer. Cancer Lett 313:123–128. https://doi.org/10.1016/j.canlet.2011.09.003
doi: 10.1016/j.canlet.2011.09.003
pubmed: 21974805
Papaspyridonos M, McNeill E, de Bono JP, Smith A, Burnand KG, Channon KM, Greaves DR (2008) Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol 28:433–440. https://doi.org/10.1161/ATVBAHA.107.159160
doi: 10.1161/ATVBAHA.107.159160
pubmed: 18096829
Pereira AR, Falcão LM (2015) Galectin-3, a prognostic marker–and a therapeutic target? Rev Port Cardiol 34:201–208. https://doi.org/10.1016/j.repc.2014.10.005
doi: 10.1016/j.repc.2014.10.005
pubmed: 25746675
Santoriello C, Zon LI (2012) Hooked! modeling human disease in zebrafish. J Clin Invest 122:2337–2343. https://doi.org/10.1172/JCI60434
doi: 10.1172/JCI60434
pubmed: 22751109
pmcid: 3386812
Shu W, Guttentag S, Wang Z, Andl T, Ballard P, Lu MM, Piccolo S, Birchmeier W, Whitsett JA, Millar SE, Morrisey EE (2005) Wnt/β-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal–distal patterning in the lung. Dev Biol 283:226–239. https://doi.org/10.1016/j.ydbio.2005.04.014
doi: 10.1016/j.ydbio.2005.04.014
pubmed: 15907834
Smirnova A, Mentor A, Ranefall P, Bornehag CG, Brunström B, Mattsson A, Jönsson M (2021) Increased apoptosis, reduced Wnt/β-catenin signaling, and altered tail development in zebrafish embryos exposed to a human-relevant chemical mixture. Chemosphere 264:128467. https://doi.org/10.1016/j.chemosphere.2020.128467
doi: 10.1016/j.chemosphere.2020.128467
pubmed: 33032226
Song L, Tang JW, Owusu L, Sun M-Z, Wu J, Zhang J (2014) Galectin-3 in cancer. Clin Chim Acta 431:185–191. https://doi.org/10.1016/j.cca.2014.01.019
doi: 10.1016/j.cca.2014.01.019
pubmed: 24530298
Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT, Murry CE (2007) Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A 104:9685–9690. https://doi.org/10.1073/pnas.0702859104
doi: 10.1073/pnas.0702859104
pubmed: 17522258
pmcid: 1876428
Üstündağ ÜV, Ünal İ, Ateş PS, Alturfan AA, Yiğitbaşı T, Emekli-Alturfan E (2017) Bisphenol A and di(2-ethylhexyl) phthalate exert divergent effects on apoptosis and the Wnt/β-catenin pathway in zebrafish embryos: a possible mechanism of endocrine disrupting chemical action. Toxicol Ind Health 33:901–910. https://doi.org/10.1177/0748233717733598
doi: 10.1177/0748233717733598
pubmed: 28992791
Wallace KN, Pack M (2003) Unique and conserved aspects of gut development in zebrafish. Dev Biol 255:12–29. https://doi.org/10.1016/s0012-1606(02)00034-9
doi: 10.1016/s0012-1606(02)00034-9
pubmed: 12618131
Yu X, Sun Y, Zhao Y, Zhang W, Yang Z, Gao Y, Cai H, Li Y, Wang Q, Bian B, Nie J (2015) Prognostic value of plasma galectin-3 levels in patients with coronary heart disease and chronic heart failure. Int Heart J 56:314–318. https://doi.org/10.1536/ihj.14-304
doi: 10.1536/ihj.14-304
pubmed: 25902879
Zhang H, Luo M, Liang X, Wang D, Gu X, Duan C, Gu H, Chen G, Zhao X, Zhao Z, Liu C (2014) Galectin-3 as a marker and potential therapeutic target in breast cancer. PLoS ONE 9:e103482. https://doi.org/10.1371/journal.pone.0103482
doi: 10.1371/journal.pone.0103482
pubmed: 25254965
pmcid: 4177814
Zhang Y, Bai XT, Zhu KY, Jin Y, Deng M, Le HY, Fu YF, Chen Y, Zhu J, Look AT, Kanki J, Chen Z, Chen SJ, Liu TX (2008) In vivo interstitial migration of primitive macrophages mediated by JNK-matrix metalloproteinase 13 signaling in response to acute injury. J Immunol 181:2155–2164. https://doi.org/10.4049/jimmunol.181.3.2155
doi: 10.4049/jimmunol.181.3.2155
pubmed: 18641354