Application of Flat-Panel Volume Computed Tomography to Evaluate Cerebral Hemorrhage After Mechanical Thrombectomy of Acute Embolic Stroke of the Anterior Circulation.
Aged
Brain
/ diagnostic imaging
Cerebral Hemorrhage
/ diagnostic imaging
Cone-Beam Computed Tomography
/ methods
Embolic Stroke
/ complications
Extravasation of Diagnostic and Therapeutic Materials
/ physiopathology
Female
Humans
Male
Postoperative Complications
/ diagnostic imaging
Retrospective Studies
Stroke
/ complications
Thrombectomy
/ methods
Journal
Journal of computer assisted tomography
ISSN: 1532-3145
Titre abrégé: J Comput Assist Tomogr
Pays: United States
ID NLM: 7703942
Informations de publication
Date de publication:
Historique:
pubmed:
5
8
2021
medline:
15
12
2021
entrez:
4
8
2021
Statut:
ppublish
Résumé
The aim of the study was to evaluate cerebral hemorrhage (CH) and contrast media leakage (CML or commonly synonymous with "contrast staining") differentiation on flat-panel volume computed tomography (FPVCT) after intra-arterial mechanical thrombectomy. We evaluated patients with hyperattenuation on FPVCT after intra-arterial mechanical thrombectomy between 2018 and 2021 by multiple parameters on CT angiography, FPVCT, CT, and/or magnetic resonance imaging. The CH (n = 43) versus CML (n = 24) groups revealed: (1) regional anatomical characteristics (preserved and distorted): 7 of 43 (9.6%) and 36 of 43 (83.7%) versus 22 of 24 (91.7%) and 2 of 24 (8.3%, P < 0.001); (2) thrombus in proximal two-thirds versus distal one-thirds M1 segment of middle cerebral artery (preserved and distorted): 17 of 21 (81.0%) and 4 of 21 (19.0%) versus 5 of 11 (45.5%) and 6 of 11 (54.5%, P = 0.040); and (3) average density ratio: 1.83 ± 0.65 versus 1.35 ± 0.13 (P = 0.004). Contrast media leakage can be differentiated from CH by preserved regional anatomical characteristics and relatively low average density ratio on FPVCT. Patients with CML who have embolism in proximal two thirds of M1 segment are more likely to develop hyperattenuation with preserved regional anatomy.
Identifiants
pubmed: 34347702
doi: 10.1097/RCT.0000000000001203
pii: 00004728-900000000-98888
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
919-925Informations de copyright
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Nakano S, Iseda T, Kawano H, et al. Parenchymal hyperdensity on computed tomography after intra-arterial reperfusion therapy for acute middle cerebral artery occlusion: incidence and clinical significance. Stroke. 2001;32:2042–2048. doi:10.1161/hs0901.095602.
doi: 10.1161/hs0901.095602
Rouchaud A, Pistocchi S, Blanc R, et al. Predictive value of flat-panel CT for haemorrhagic transformations in patients with acute stroke treated with thrombectomy. J Neurointerv Surg. 2014;6:139–143. doi:10.1136/neurintsurg-2012-010644.
doi: 10.1136/neurintsurg-2012-010644
Nikoubashman O, Jablawi F, Dekeyzer S, et al. MRI appearance of intracerebral iodinated contrast agents: is it possible to distinguish extravasated contrast agent from hemorrhage? AJNR Am J Neuroradiol. 2016;37:1418–1421. doi:10.3174/ajnr.A4755.
doi: 10.3174/ajnr.A4755
Tijssen MP, Hofman PA, Stadler AA, et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol. 2014;24:834–840. doi:10.1007/s00330-013-3073-x.
doi: 10.1007/s00330-013-3073-x
Dekeyzer S, Nikoubashman O, Lutin B, et al. Distinction between contrast staining and hemorrhage after endovascular stroke treatment: one CT is not enough. J Neurointerv Surg. 2017;9:394–398. doi:10.1136/neurintsurg-2016-012290.
doi: 10.1136/neurintsurg-2016-012290
Puntonet J, Richard ME, Edjlali M, et al. Imaging findings after mechanical thrombectomy in acute ischemic stroke. Stroke. 2019;50:1618–1625. doi:10.1161/STROKEAHA.118.024754.
doi: 10.1161/STROKEAHA.118.024754
Xu C, Zhou Y, Zhang R, et al. Metallic hyperdensity sign on noncontrast CT immediately after mechanical thrombectomy predicts parenchymal hemorrhage in patients with acute large-artery occlusion. AJNR Am J Neuroradiol. 2019;40:661–667. doi:10.3174/ajnr.A6008.
doi: 10.3174/ajnr.A6008
Portela de Oliveira E, Chakraborty S, Patel M, et al. Value of high-density sign on CT images after mechanical thrombectomy for large vessel occlusion in predicting hemorrhage and unfavorable outcome. Neuroradiol J. 2021;34:120–127.
Payabvash S, Khan AA, Qureshi MH, et al. Detection of intraparenchymal hemorrhage after endovascular therapy in patients with acute ischemic stroke using immediate postprocedural flat-panel computed tomography scan. J Neuroimaging. 2016;26:213–218. doi:10.1111/jon.12277.
doi: 10.1111/jon.12277
Liu YC, Tsai YH, Tang SC, et al. Cytokine MIF enhances blood-brain barrier permeability: impact for therapy in ischemic stroke. Sci Rep. 2018;8:743. doi:10.1038/s41598-017-16927-9.
doi: 10.1038/s41598-017-16927-9
Serlin Y, Ofer J, Ben-Arie G, et al. Blood-brain barrier leakage: a new biomarker in transient ischemic attacks. Stroke. 2019;50:1266–1269. doi:10.1161/STROKEAHA.119.025247.
doi: 10.1161/STROKEAHA.119.025247
Mestre H, Du T, Sweeney AM, et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science. 2020;367:eaax7171. doi:10.1126/science.aax7171.
doi: 10.1126/science.aax7171
Cho S, Ling YH, Lee MJ, et al. Temporal profile of blood-brain barrier breakdown in reversible cerebral vasoconstriction syndrome. Stroke. 2020;51:1451–1457. doi:10.1161/STROKEAHA.119.028656.
doi: 10.1161/STROKEAHA.119.028656
Wu CH, Lirng JF, Ling YH, et al. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood-brain barrier leakage. Ann Neurol. 2021;89:111–124. doi:10.1002/ana.25928.
doi: 10.1002/ana.25928
Menon BK, Smith EE, Modi J, et al. Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR Am J Neuroradiol. 2011;32:1640–1645. doi:10.3174/ajnr.A2564.
doi: 10.3174/ajnr.A2564
Garcia-Tornel A, Carvalho V, Boned S, et al. Improving the evaluation of collateral circulation by multiphase computed tomography angiography in acute stroke patients treated with endovascular reperfusion therapies. Interv Neurol. 2016;5:209–217. doi:10.1159/000448525.
doi: 10.1159/000448525
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–163. doi:10.1016/j.jcm.2016.02.012.
doi: 10.1016/j.jcm.2016.02.012
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi:10.2307/2529310.
doi: 10.2307/2529310
Cabral FB, Castro-Afonso LH, Nakiri GS, et al. Hyper-attenuating brain lesions on CT after ischemic stroke and thrombectomy are associated with final brain infarction. Interv Neuroradiol. 2017;23:594–600. doi:10.1177/1591019917729550.
doi: 10.1177/1591019917729550
Bae S, Ahn SS, Kim BM, et al. Hyperattenuating lesions after mechanical thrombectomy in acute ischaemic stroke: factors predicting symptomatic haemorrhage and clinical outcomes. Clin Radiol. 2021;76:80.e15–80.e23. doi:10.1016/j.crad.2020.08.021.
doi: 10.1016/j.crad.2020.08.021
Yoon W, Seo JJ, Kim JK, et al. Contrast enhancement and contrast extravasation on computed tomography after intra-arterial thrombolysis in patients with acute ischemic stroke. Stroke. 2004;35:876–881. doi:10.1161/01.STR.0000120726.69501.74.
doi: 10.1161/01.STR.0000120726.69501.74
Marinkovic S, Gibo H, Milisavljevic M, et al. Anatomic and clinical correlations of the lenticulostriate arteries. Clin Anat. 2001;14:190–195. doi:10.1002/ca.1032.
doi: 10.1002/ca.1032
Behme D, Kowoll A, Weber W, et al. M1 is not M1 in ischemic stroke: the disability-free survival after mechanical thrombectomy differs significantly between proximal and distal occlusions of the middle cerebral artery M1 segment. J Neurointerv Surg. 2015;7:559–563. doi:10.1136/neurintsurg-2014-011212.
doi: 10.1136/neurintsurg-2014-011212
Cai J, Zhou Y, Zhao Y, et al. Comparison of various reconstructions derived from dual-energy CT immediately after endovascular treatment of acute ischemic stroke in predicting hemorrhage. Eur Radiol. 2021;31:4419–4427.
Kamel EM, Rizzo E, Duchosal MA, et al. Radiological profile of anemia on unenhanced MDCT of the thorax. Eur Radiol. 2008;18:1863–1868. doi:10.1007/s00330-008-0950-9.
doi: 10.1007/s00330-008-0950-9
Beal JC, Overby P. Severe anemia leading to hypodensity of cerebral venous sinuses on computed tomography imaging. Neurohospitalist. 2012;2:36–37. doi:10.1177/1941874411426888.
doi: 10.1177/1941874411426888
Borggrefe J, Kottlors J, Mirza M, et al. Differentiation of clot composition using conventional and dual-energy computed tomography. Clin Neuroradiol. 2018;28:515–522. doi:10.1007/s00062-017-0599-3.
doi: 10.1007/s00062-017-0599-3
Cervera A, Chamorro A. Antithrombotic therapy in cardiac embolism. Curr Cardiol Rev. 2010;6:227–237. doi:10.2174/157340310791658749.
doi: 10.2174/157340310791658749
Wildenhain SL, Jungreis CA, Barr J, et al. CT after intracranial intraarterial thrombolysis for acute stroke. AJNR Am J Neuroradiol. 1994;15:487–492.
Eide PK, Vatnehol SAS, Emblem KE, et al. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep. 2018;8:7194. doi:10.1038/s41598-018-25666-4.
doi: 10.1038/s41598-018-25666-4
Jost G, Frenzel T, Lohrke J, et al. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol. 2017;27:2877–2885. doi:10.1007/s00330-016-4654-2.
doi: 10.1007/s00330-016-4654-2
Naganawa S, Nakane T, Kawai H, et al. Gd-based contrast enhancement of the perivascular spaces in the basal ganglia. Magn Reson Med Sci. 2017;16:61–65. doi:10.2463/mrms.mp.2016-0039.
doi: 10.2463/mrms.mp.2016-0039