Genetic insights into biological mechanisms governing human ovarian ageing.
Adult
Aging
/ genetics
Alleles
Animals
Bone and Bones
/ metabolism
Checkpoint Kinase 1
/ genetics
Checkpoint Kinase 2
/ genetics
Diabetes Mellitus, Type 2
Diet
Europe
/ ethnology
Asia, Eastern
/ ethnology
Female
Fertility
/ genetics
Fragile X Mental Retardation Protein
/ genetics
Genetic Predisposition to Disease
Genome-Wide Association Study
Healthy Aging
/ genetics
Humans
Longevity
/ genetics
Menopause
/ genetics
Menopause, Premature
/ genetics
Mice
Mice, Inbred C57BL
Middle Aged
Ovary
/ metabolism
Primary Ovarian Insufficiency
/ genetics
Uterus
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
24
08
2020
accepted:
29
06
2021
pubmed:
6
8
2021
medline:
8
10
2021
entrez:
5
8
2021
Statut:
ppublish
Résumé
Reproductive longevity is essential for fertility and influences healthy ageing in women
Identifiants
pubmed: 34349265
doi: 10.1038/s41586-021-03779-7
pii: 10.1038/s41586-021-03779-7
pmc: PMC7611832
mid: EMS136340
doi:
Substances chimiques
FMR1 protein, human
0
Fragile X Mental Retardation Protein
139135-51-6
Checkpoint Kinase 2
EC 2.7.1.11
Checkpoint Kinase 1
EC 2.7.11.1
Chek1 protein, mouse
EC 2.7.11.1
Chek2 protein, mouse
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
393-397Subventions
Organisme : Medical Research Council
ID : MC_UU_12012/4
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 29186
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00006/2
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : P50 CA058223
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_12015/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00017/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U137686851
Pays : United Kingdom
Organisme : NIGMS NIH HHS
ID : R01 GM098605
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00002/7
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00007/10
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 10118
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 202802/Z/16/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17189
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00014/4
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : NIEHS NIH HHS
ID : P30 ES010126
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00006/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 212946/Z/18/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : G1001357
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12026/2
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : U01 HL130114
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00011/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00011/6
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_13049
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 204623/Z/16/Z
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : U01 CA182913
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_14135
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Lambalk, C. B., van Disseldorp, J., de Koning, C. H. & Broekmans, F. J. Testing ovarian reserve to predict age at menopause. Maturitas 63, 280–291 (2009).
pubmed: 19631481
doi: 10.1016/j.maturitas.2009.06.007
Collaborative Group on Hormonal Factors in Breast Cancer. Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. Lancet 394, 1159–1168 (2019).
pmcid: 6891893
doi: 10.1016/S0140-6736(19)31709-X
Murray, A. et al. Population-based estimates of the prevalence of FMR1 expansion mutations in women with early menopause and primary ovarian insufficiency. Genet. Med. 16, 19–24 (2014).
pubmed: 23703681
doi: 10.1038/gim.2013.64
Christensen, K., Doblhammer, G., Rau, R. & Vaupel, J. W. Ageing populations: the challenges ahead. Lancet 374, 1196–1208 (2009).
pubmed: 19801098
pmcid: 2810516
doi: 10.1016/S0140-6736(09)61460-4
InterLACE Study Team. Variations in reproductive events across life: a pooled analysis of data from 505 147 women across 10 countries. Hum. Reprod. 34, 881–893 (2019).
pmcid: 7571491
doi: 10.1093/humrep/dez015
Gruhn, J. R. et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365, 1466–1469 (2019).
pubmed: 31604276
pmcid: 7212007
doi: 10.1126/science.aav7321
Donnez, J. & Dolmans, M.-M. Fertility preservation in women. N. Engl. J. Med. 377, 1657–1665 (2017).
pubmed: 29069558
doi: 10.1056/NEJMra1614676
Yding Andersen, C., Mamsen, L. S. & Kristensen, S. G. Fertility preservation: freezing of ovarian tissue and clinical opportunities. Reproduction 158, F27–F34 (2019).
pubmed: 31284266
doi: 10.1530/REP-18-0635
Argyle, C. E., Harper, J. C. & Davies, M. C. Oocyte cryopreservation: where are we now? Hum. Reprod. Update 22, 440–449 (2016).
pubmed: 27006004
doi: 10.1093/humupd/dmw007
Stolk, L. et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat. Genet. 44, 260–268 (2012).
pubmed: 22267201
pmcid: 3288642
doi: 10.1038/ng.1051
Venturella, R. et al. The genetics of non-syndromic primary ovarian insufficiency: a systematic review. Int. J. Fertil. Steril. 13, 161–168 (2019).
pubmed: 31310068
pmcid: 6642427
Titus, S. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 5, 172ra21 (2013).
pubmed: 23408054
pmcid: 5130338
doi: 10.1126/scitranslmed.3004925
Day, F. R. et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. 47, 1294–1303 (2015).
pubmed: 26414677
pmcid: 4661791
doi: 10.1038/ng.3412
Horikoshi, M. et al. Elucidating the genetic architecture of reproductive ageing in the Japanese population. Nat. Commun. 9, 1977 (2018).
pubmed: 29773799
pmcid: 5958096
doi: 10.1038/s41467-018-04398-z
Caburet, S. et al. Homozygous hypomorphic BRCA2 variant in primary ovarian insufficiency without cancer or Fanconi anaemia trait. J. Med. Genet. 58,125–134 (2020).
doi: 10.1136/jmedgenet-2019-106672
Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019).
pubmed: 31748747
pmcid: 6887549
doi: 10.1038/s41586-019-1765-3
Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).
pubmed: 28436984
pmcid: 5841952
doi: 10.1038/ng.3841
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).
pubmed: 28622505
pmcid: 5536862
doi: 10.1016/j.cell.2017.05.038
Reddy, P. et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319, 611–613 (2008).
pubmed: 18239123
doi: 10.1126/science.1152257
Suh, E.-K. et al. p63 protects the female germ line during meiotic arrest. Nature 444, 624–628 (2006).
pubmed: 17122775
doi: 10.1038/nature05337
Deutsch, G. B. et al. DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer. Cell 144, 566–576 (2011).
pubmed: 21335238
pmcid: 3087504
doi: 10.1016/j.cell.2011.01.013
Tuppi, M. et al. Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nat. Struct. Mol. Biol. 25, 261–269 (2018).
pubmed: 29483652
doi: 10.1038/s41594-018-0035-7
Rinaldi, V. D., Bloom, J. C. & Schimenti, J. C. Oocyte elimination through DNA damage signaling from CHK1/CHK2 to p53 and p63. Genetics 215, 373–378 (2020).
pubmed: 32273296
pmcid: 7268994
doi: 10.1534/genetics.120.303182
Aiken, C. E., Tarry-Adkins, J. L., Penfold, N. C., Dearden, L. & Ozanne, S. E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J. 30, 1548–1556 (2016).
pubmed: 26700734
doi: 10.1096/fj.15-280800
Pittman, D. L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell 1, 697–705 (1998).
pubmed: 9660953
doi: 10.1016/S1097-2765(00)80069-6
Nakajo, N. et al. Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev. 14, 328–338 (2000).
pubmed: 10673504
pmcid: 316360
Ruth, K. S. et al. Events in early life are associated with female reproductive ageing: a UK Biobank study. Sci. Rep. 6, 24710 (2016).
pubmed: 27094806
pmcid: 4837365
doi: 10.1038/srep24710
Pan, Y. et al. A heterozygous hypomorphic mutation of Fanca causes impaired follicle development and subfertility in female mice. Mol. Genet. Genomics 296, 103–112 (2021).
pubmed: 33025164
doi: 10.1007/s00438-020-01730-5
Bakker, S. T. et al. Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M. Hum. Mol. Genet. 18, 3484–3495 (2009).
pubmed: 19561169
doi: 10.1093/hmg/ddp297
Caburet, S. et al. Mutant cohesin in premature ovarian failure. N. Engl. J. Med. 370, 943–949 (2014).
pubmed: 24597867
pmcid: 4068824
doi: 10.1056/NEJMoa1309635
Bolcun-Filas, E., Rinaldi, V. D., White, M. E. & Schimenti, J. C. Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343, 533–536 (2014).
pubmed: 24482479
pmcid: 4048839
doi: 10.1126/science.1247671
Adhikari, D. et al. Inhibitory phosphorylation of Cdk1 mediates prolonged prophase I arrest in female germ cells and is essential for female reproductive lifespan. Cell Res. 26, 1212–1225 (2016).
pubmed: 27767095
pmcid: 5099868
doi: 10.1038/cr.2016.119
Rinaldi, V. D., Bolcun-Filas, E., Kogo, H., Kurahashi, H. & Schimenti, J. C. The DNA damage checkpoint eliminates mouse oocytes with chromosome synapsis failure. Mol. Cell 67, 1026–1036.e2 (2017).
pubmed: 28844861
pmcid: 5621520
doi: 10.1016/j.molcel.2017.07.027
Tharp, M. E., Malki, S. & Bortvin, A. Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity. Nat. Commun. 11, 330 (2020).
pubmed: 31949138
pmcid: 6965193
doi: 10.1038/s41467-019-14055-8
Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G
pubmed: 10859164
pmcid: 316686
doi: 10.1101/gad.840500
Abe, H. et al. CHEK1 coordinates DNA damage signaling and meiotic progression in the male germline of mice. Hum. Mol. Genet. 27, 1136–1149 (2018).
pubmed: 29360988
pmcid: 6185175
doi: 10.1093/hmg/ddy022
Chen, L. et al. Checkpoint kinase 1 is essential for meiotic cell cycle regulation in mouse oocytes. Cell Cycle 11, 1948–1955 (2012).
pubmed: 22544319
doi: 10.4161/cc.20279
Pacheco, S. et al. ATR is required to complete meiotic recombination in mice. Nat. Commun. 9, 2622 (2018).
pubmed: 29977027
pmcid: 6033890
doi: 10.1038/s41467-018-04851-z
Pacheco, S., Maldonado-Linares, A., Garcia-Caldés, M. & Roig, I. ATR function is indispensable to allow proper mammalian follicle development. Chromosoma 128, 489–500 (2019).
pubmed: 31489491
doi: 10.1007/s00412-019-00723-7
López-Contreras, A. J., Gutierrez-Martinez, P., Specks, J., Rodrigo-Perez, S. & Fernandez-Capetillo, O. An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. J. Exp. Med. 209, 455–461 (2012).
pubmed: 22370720
pmcid: 3302228
doi: 10.1084/jem.20112147
Salpeter, S. R. et al. Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes. Metab. 8, 538–554 (2006).
pubmed: 16918589
doi: 10.1111/j.1463-1326.2005.00545.x
Manson, J. E. et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. J. Am. Med. Assoc. 310, 1353–1368 (2013).
doi: 10.1001/jama.2013.278040
Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).
pubmed: 32042192
pmcid: 7025895
doi: 10.1038/s41591-020-0751-5
Dam, V. et al. Association of menopausal characteristics and risk of coronary heart disease: a pan-European case-cohort analysis. Int. J. Epidemiol. 48, 1275–1285 (2019).
pubmed: 30796459
pmcid: 6693816
doi: 10.1093/ije/dyz016
de Kat, A. C. et al. Unraveling the associations of age and menopause with cardiovascular risk factors in a large population-based study. BMC Med. 15, 2 (2017).
pubmed: 28049531
pmcid: 5210309
doi: 10.1186/s12916-016-0762-8
Atsma, F., Bartelink, M.-L. E. L., Grobbee, D. E. & van der Schouw, Y. T. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: a meta-analysis. Menopause 13, 265–279 (2006).
pubmed: 16645540
doi: 10.1097/01.gme.0000218683.97338.ea
Ambikairajah, A., Walsh, E. & Cherbuin, N. Lipid profile differences during menopause: a review with meta-analysis. Menopause 26, 1327–1333 (2019).
pubmed: 31567869
doi: 10.1097/GME.0000000000001403
Pike, C. J. Sex and the development of Alzheimer’s disease. J. Neurosci. Res. 95, 671–680 (2017).
pubmed: 27870425
pmcid: 5120614
doi: 10.1002/jnr.23827
Zhu, D. et al. Body mass index and age at natural menopause: an international pooled analysis of 11 prospective studies. Eur. J. Epidemiol. 33, 699–710 (2018).
pubmed: 29460096
doi: 10.1007/s10654-018-0367-y
Shadyab, A. H. et al. Ages at menarche and menopause and reproductive lifespan as predictors of exceptional longevity in women: the Women’s Health Initiative. Menopause 24, 35–44 (2017).
pubmed: 27465713
pmcid: 5177476
doi: 10.1097/GME.0000000000000710
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Tyrrell, J. et al. Using genetics to understand the causal influence of higher BMI on depression. Int. J. Epidemiol. 48, 834–848 (2019).
pubmed: 30423117
doi: 10.1093/ije/dyy223
Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).
pubmed: 25642633
pmcid: 4342297
doi: 10.1038/ng.3190
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Terao, C. et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584, 130–135 (2020).
pubmed: 32581364
pmcid: 7489641
doi: 10.1038/s41586-020-2426-2
Wood, A. R. et al. Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively. Diabetologia 59, 1214–1221 (2016).
pubmed: 26961502
pmcid: 4869698
doi: 10.1007/s00125-016-3908-5
Szustakowski, J. D. et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet. https://doi.org/10.1038/s41588-021-00885-0 (2021).
McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795
pmcid: 4893825
doi: 10.1186/s13059-016-0974-4
Zhou, W. et al. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nat. Genet. 52, 634–639 (2020).
pubmed: 32424355
pmcid: 7871731
doi: 10.1038/s41588-020-0621-6
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).
pubmed: 27019110
doi: 10.1038/ng.3538
Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at https://doi.org/10.1101/447367 (2018).
Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
pubmed: 25597830
doi: 10.1038/ncomms6890
Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).
doi: 10.1038/s41586-018-0590-4
Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).
pubmed: 27365425
pmcid: 5305050
doi: 10.1182/blood-2016-05-716480
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380
pmcid: 5896795
doi: 10.1038/s41588-018-0081-4
GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
pmcid: 4547484
doi: 10.1126/science.1262110
Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
doi: 10.1038/nature14248
Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).
pubmed: 25581432
doi: 10.1038/ng.3173
Segrè, A. V., Groop, L., Mootha, V. K., Daly, M. J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).
pubmed: 20714348
pmcid: 2920848
doi: 10.1371/journal.pgen.1001058
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLOS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710
pmcid: 4401657
doi: 10.1371/journal.pcbi.1004219
Lamparter, D., Marbach, D., Rueedi, R., Kutalik, Z. & Bergmann, S. Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLOS Comput. Biol. 12, e1004714 (2016).
pubmed: 26808494
pmcid: 4726509
doi: 10.1371/journal.pcbi.1004714
Deelen, P. et al. Improving the diagnostic yield of exome- sequencing by predicting gene-phenotype associations using large-scale gene expression analysis. Nat. Commun. 10, 2837 (2019).
pubmed: 31253775
pmcid: 6599066
doi: 10.1038/s41467-019-10649-4
Knijnenburg, T. A. et al. Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Rep. 23, 239–254.e6 (2018).
pubmed: 29617664
pmcid: 5961503
doi: 10.1016/j.celrep.2018.03.076
Pearl, L. H., Schierz, A. C., Ward, S. E., Al-Lazikani, B. & Pearl, F. M. G. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer 15, 166–180 (2015).
pubmed: 25709118
doi: 10.1038/nrc3891
Álvarez-Quilón, A. et al. Endogenous DNA 3′ blocks are vulnerabilities for BRCA1 and BRCA2 deficiency and are reversed by the APE2 nuclease. Mol. Cell 78, 1152–1165.e8 (2020).
pubmed: 32516598
pmcid: 7340272
doi: 10.1016/j.molcel.2020.05.021
Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).
pubmed: 26430803
pmcid: 4596916
doi: 10.1016/j.ajhg.2015.09.001
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).
pubmed: 24114802
pmcid: 4377079
doi: 10.1002/gepi.21758
Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017).
pubmed: 28527048
pmcid: 5506233
doi: 10.1007/s10654-017-0255-x
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).
pubmed: 27061298
pmcid: 4849733
doi: 10.1002/gepi.21965
Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression. Int. J. Epidemiol. 47, 2100 (2018).
pubmed: 30423109
pmcid: 6280936
doi: 10.1093/ije/dyy265
Samuelsson, A.-M. et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51, 383–392 (2008).
pubmed: 18086952
doi: 10.1161/HYPERTENSIONAHA.107.101477
Sankar, A. et al. KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes. Nat. Cell Biol. 22, 380–388 (2020).
pubmed: 32231309
pmcid: 7212036
doi: 10.1038/s41556-020-0494-z
Li, L. et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 858–873.e4 (2017).
pubmed: 28457750
doi: 10.1016/j.stem.2017.03.007
Zhang, Y. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol. Cell 72, 1021–1034.e4 (2018).
doi: 10.1016/j.molcel.2018.10.029
pubmed: 30472193
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Chen, S. et al. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinformatics 18, 80 (2017).
pubmed: 28361673
pmcid: 5374548
doi: 10.1186/s12859-017-1469-3
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protocols 11, 1650–1667 (2016).
pubmed: 27560171
doi: 10.1038/nprot.2016.095
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Takai, H. et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 21, 5195–5205 (2002).
pubmed: 12356735
pmcid: 129029
doi: 10.1093/emboj/cdf506
Lewandoski, M., Wassarman, K. M. & Martin, G. R. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr. Biol. 7, 148–151 (1997).
pubmed: 9016703
doi: 10.1016/S0960-9822(06)00059-5
Lam, M. H., Liu, Q., Elledge, S. J. & Rosen, J. M. Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6, 45–59 (2004).
pubmed: 15261141
doi: 10.1016/j.ccr.2004.06.015
Takeo, T. & Nakagata, N. Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PLoS One 10, e0128330 (2015).
pubmed: 26024317
pmcid: 4449130
doi: 10.1371/journal.pone.0128330
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
doi: 10.1038/nmeth.2019
pubmed: 22743772