The impact of shape uncertainty on aortic-valve pressure-drop computations.
aortic valve stenosis
computational fluid dynamics
meta-modeling
sensitivity analysis
statistical shape modeling
uncertainty quantification
Journal
International journal for numerical methods in biomedical engineering
ISSN: 2040-7947
Titre abrégé: Int J Numer Method Biomed Eng
Pays: England
ID NLM: 101530293
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
17
05
2021
received:
25
01
2021
accepted:
04
07
2021
pubmed:
6
8
2021
medline:
26
11
2021
entrez:
5
8
2021
Statut:
ppublish
Résumé
Patient-specific image-based computational fluid dynamics (CFD) is widely adopted in the cardiovascular research community to study hemodynamics, and will become increasingly important for personalized medicine. However, segmentation of the flow domain is not exact and geometric uncertainty can be expected which propagates through the computational model, leading to uncertainty in model output. Seventy-four aortic-valves were segmented from computed tomography images at peak systole. Statistical shape modeling was used to obtain an approximate parameterization of the original segmentations. This parameterization was used to train a meta-model that related the first five shape mode coefficients and flowrate to the CFD-computed transvalvular pressure-drop. Consequently, shape uncertainty in the order of 0.5 and 1.0 mm was emulated by introducing uncertainty in the shape mode coefficients. A global variance-based sensitivity analysis was performed to quantify output uncertainty and to determine relative importance of the shape modes. The first shape mode captured the opening/closing behavior of the valve and uncertainty in this mode coefficient accounted for more than 90% of the output variance. However, sensitivity to shape uncertainty is patient-specific, and the relative importance of the fourth shape mode coefficient tended to increase with increases in valvular area. These results show that geometric uncertainty in the order of image voxel size may lead to substantial uncertainty in CFD-computed transvalvular pressure-drops. Moreover, this illustrates that it is essential to assess the impact of geometric uncertainty on model output, and that this should be thoroughly quantified for applications that wish to use image-based CFD models.
Identifiants
pubmed: 34350705
doi: 10.1002/cnm.3518
pmc: PMC9286381
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e3518Informations de copyright
© 2021 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Références
J Biomech. 2014 Mar 21;47(5):1014-9
pubmed: 24461575
IEEE Trans Med Imaging. 2010 Sep;29(9):1636-51
pubmed: 20442044
J Biomech. 2019 Sep 20;94:49-58
pubmed: 31358285
IEEE Trans Med Imaging. 2008 Sep;27(9):1189-201
pubmed: 18753041
JACC Cardiovasc Imaging. 2015 Oct;8(10):1209-1222
pubmed: 26481846
Med Phys. 2017 Jun;44(6):2281-2292
pubmed: 28276071
J Biomech Eng. 2016 Dec 1;138(12):
pubmed: 27636531
J Am Coll Cardiol. 2020 Apr 21;75(15):1758-1769
pubmed: 32299587
Med Image Anal. 2020 Feb;60:101627
pubmed: 31865280
J Biomech. 2018 Jun 6;74:50-56
pubmed: 29699822
BMC Med Imaging. 2016 May 31;16(1):40
pubmed: 27245048
JACC Cardiovasc Imaging. 2010 Jun;3(6):555-62
pubmed: 20541709
Eur Heart J Cardiovasc Imaging. 2017 Mar 1;18(3):254-275
pubmed: 28363204
Eur J Cardiothorac Surg. 2017 Oct 1;52(4):616-664
pubmed: 29156023
Sci Rep. 2016 Aug 26;6:32316
pubmed: 27561388
PLoS One. 2018 Nov 16;13(11):e0207178
pubmed: 30444909
Med Image Anal. 2009 Aug;13(4):543-63
pubmed: 19525140
Int J Numer Method Biomed Eng. 2016 Aug;32(8):
pubmed: 26475178
Int J Numer Method Biomed Eng. 2017 May;33(5):
pubmed: 27557429
Biomech Model Mechanobiol. 2020 Apr;19(2):713-722
pubmed: 31679093
Comput Methods Biomech Biomed Eng Imaging Vis. 2018;6(5):520-531
pubmed: 30034953
Cardiovasc Eng Technol. 2018 Dec;9(4):539-543
pubmed: 30421097
IEEE J Biomed Health Inform. 2017 Jan 17;22(2):503-515
pubmed: 28103561
J Am Coll Cardiol. 1992 Dec;20(7):1585-93
pubmed: 1452933
J Biomech. 2019 May 9;88:55-63
pubmed: 30928205
Comput Methods Biomech Biomed Engin. 2012;15(2):101-10
pubmed: 21360361
Biomed Eng Online. 2018 May 29;17(1):65
pubmed: 29843736
NMR Biomed. 2014 Jul;27(7):826-34
pubmed: 24817676
Med Image Anal. 2011 Dec;15(6):863-76
pubmed: 21737337
Int J Numer Method Biomed Eng. 2020 Oct;36(10):e3387
pubmed: 32686898
IEEE Trans Med Imaging. 2015 Dec;34(12):2562-71
pubmed: 26087484
Front Bioeng Biotechnol. 2014 Nov 27;2:58
pubmed: 25506051
J Biomech. 2016 Aug 16;49(12):2540-7
pubmed: 26803339
JACC Cardiovasc Interv. 2013 Feb;6(2):149-57
pubmed: 23428006
J Am Coll Cardiol. 2006 Apr 4;47(7):1410-7
pubmed: 16580530
J Biomech. 2018 Jun 6;74:116-125
pubmed: 29729852
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):485-92
pubmed: 24505702
J Biomech. 2012 Oct 11;45(15):2499-505
pubmed: 22884968
Radiology. 2010 Dec;257(3):854-62
pubmed: 21084417
J Am Coll Cardiol. 1988 Nov;12(5):1344-53
pubmed: 3170977
Circulation. 1994 Jan;89(1):116-21
pubmed: 8281636
Int J Numer Method Biomed Eng. 2021 Oct;37(10):e3518
pubmed: 34350705