Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in cancer cells.
Acetates
/ metabolism
CD8-Positive T-Lymphocytes
/ drug effects
Colonic Neoplasms
/ genetics
Gene Expression
/ drug effects
Gene Expression Regulation
/ drug effects
HCT116 Cells
Humans
Neoplasms
/ metabolism
Phosphatidylinositol 3-Kinases
/ genetics
Proto-Oncogene Proteins c-akt
/ genetics
Receptors, Virus
/ genetics
Signal Transduction
/ drug effects
Tumor Microenvironment
/ drug effects
Journal
BMB reports
ISSN: 1976-670X
Titre abrégé: BMB Rep
Pays: Korea (South)
ID NLM: 101465334
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
06
05
2021
pubmed:
7
8
2021
medline:
4
1
2022
entrez:
6
8
2021
Statut:
ppublish
Résumé
In recent years, restoring anti-tumor immunity has garnered a growing interest in cancer treatment. As potential therapeutics, immune checkpoint inhibitors have demonstrated benefits in many clinical studies. Although various methods have been applied to suppress immune checkpoints to boost anti-tumor immunity, including the use of immune checkpoint inhibitors, there are still unmet clinical needs to improve the response rate of cancer treatment. Here, we show that acetate can suppress the expression of poliovirus receptor (PVR/CD155), a ligand for immune checkpoint, in colon cancer cells. We demonstrated that acetate treatment could enhance effector responses of CD8+ T cells by decreasing the expression of PVR/CD155 in cancer cells. We also found that acetate could reduce the expression of PVR/CD155 by deactivating the PI3K/AKT pathway. These results demonstrate that acetate-mediated expression of PVR/ CD155 in cancer cells might potentiate the anti-tumor immunity in the microenvironment of cancer. Our findings indicate that maintaining particular acetate concentrations could be a complementary strategy in current cancer treatment. [BMB Reports 2021; 54(8): 431-436].
Substances chimiques
Acetates
0
Receptors, Virus
0
poliovirus receptor
0
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
431-436Références
Cancers (Basel). 2019 Jun 23;11(6):
pubmed: 31234588
Cell Mol Immunol. 2019 Jan;16(1):40-52
pubmed: 30275538
J Hematol Oncol. 2018 Mar 15;11(1):39
pubmed: 29544515
CA Cancer J Clin. 2018 Jan;68(1):7-30
pubmed: 29313949
J Cell Mol Med. 2018 Jan;22(1):131-140
pubmed: 28816021
Nat Commun. 2018 Oct 16;9(1):4297
pubmed: 30327458
Gut. 1987 Oct;28(10):1221-7
pubmed: 3678950
Nat Rev Cancer. 2012 Mar 22;12(4):252-64
pubmed: 22437870
N Engl J Med. 2015 Jun 25;372(26):2509-20
pubmed: 26028255
J Biol Chem. 1994 Feb 18;269(7):5241-8
pubmed: 8106507
J Neurooncol. 2011 Apr;102(2):225-35
pubmed: 20680398
Blood. 2008 May 15;111(10):4880-91
pubmed: 18349320
Cell Death Dis. 2013 Feb 21;4:e507
pubmed: 23429293
PLoS One. 2013;8(1):e54406
pubmed: 23349877
Physiol Rev. 2001 Jul;81(3):1031-64
pubmed: 11427691
Nature. 2019 Dec;576(7787):471-476
pubmed: 31827283
Oncotarget. 2016 May 17;7(20):29454-64
pubmed: 27107423
Cell Mol Life Sci. 2019 Oct;76(20):3917-3937
pubmed: 31250035
Nat Rev Cancer. 2015 Jun;15(6):361-70
pubmed: 25998715
Mol Cell Biol. 2013 Apr;33(7):1303-16
pubmed: 23339868
J Gastrointest Oncol. 2013 Sep;4(3):308-18
pubmed: 23997942
Oncoimmunology. 2019 Apr 26;8(8):1599635
pubmed: 31413906
Front Immunol. 2019 Mar 11;10:277
pubmed: 30915065
Cancer Immunol Res. 2017 Nov;5(11):942-949
pubmed: 29038296
J Exp Med. 2020 Mar 2;217(4):
pubmed: 32040157