Optimization of a lysis method to isolate periplasmic proteins from Gram-negative bacteria for clinical mass spectrometry.


Journal

Proteomics. Clinical applications
ISSN: 1862-8354
Titre abrégé: Proteomics Clin Appl
Pays: Germany
ID NLM: 101298608

Informations de publication

Date de publication:
11 2021
Historique:
revised: 06 08 2021
received: 13 07 2021
accepted: 08 08 2021
pubmed: 10 8 2021
medline: 15 3 2022
entrez: 9 8 2021
Statut: ppublish

Résumé

Clinical mass spectrometry requires a simple step process for sample preparation. This study aims to optimize the method for isolating periplasmic protein from Gram-negative bacteria and apply to clinical mass spectrometry. The Klebsiella pneumoniae carbapenemase (KPC)-producing E. coli standard cells were used for optimizing the osmotic shock (OS) lysis method. The supernatant from OS lysis was analysed by LC-MS/MS and MALDI-TOF MS. The effectiveness of the OS lysis method for KPC-2-producing Enterobacteriaceae clinical isolates were then confirmed by MALDI-TOF MS. The optimized OS lysis using KPC-2 producing E. coli standard cells showed a high yield of KPC-2 protein and enriches periplasmic proteins. Compared with other lysis methods, the detection sensitivity of KPC-2 protein significantly increased in MALDI-TOF MS analysis. Nineteen clinical isolates were validated by MALDI-TOF MS using the OS method, which also showed higher detection sensitivity compared to other lysis method (e.g., 1.5% n-octyl-β-D-glucopyranoside) (p < 0.001). This study provides a straightforward, rapid, affordable, and detergent-free method for the analysis of periplasmic proteins from Enterobacteriaceae clinical isolates. This approach may contribute to MS-based clinical diagnostics.

Identifiants

pubmed: 34370896
doi: 10.1002/prca.202100044
doi:

Substances chimiques

Periplasmic Proteins 0
Sodium Chloride 451W47IQ8X
beta-lactamase KPC-2 EC 3.5.2.-
beta-Lactamases EC 3.5.2.6

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100044

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Lehmann, S., Brede, C., Lescuyer, P., Cocho, J. A., Vialaret, J., Bros, P., Delatour, V., & Hirtz, C. (2017). Clinical mass spectrometry proteomics (cMSP) for medical laboratory: What does the future hold? Clinica Chimica Acta, 467, 51-58.
Shushan, B. (2010). A review of clinical diagnostic applications of liquid chromatography-tandem mass spectrometry. Mass Spectrometry Reviews, 29(6), 930-944.
Bader, O. (2013). MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics, 13(5), 788-799.
Bryson, A. L., Hill, E. M., & Doern, C. D. (2019). Matrix-assisted laser desorption/ionization time-of-flight: The revolution in progress. Clinics in Laboratory Medicine, 39(3), 391-404.
Belkum, A. V., Welker, M., Pincus, D., Charrier, J.-P., & Girard, V. (2017). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: What are the current issues? Annals of Laboratory Medicine, 37(6), 475-483.
Tuli, L., & Ressom, H. W. (2009). LC-MS based detection of differential protein expression. Journal of Proteomics & Bioinformatics, 2, 416-438.
Apweiler, R., Aslanidis, C., Deufel, T., Gerstner, A., Hansen, J., Hochstrasser, D., Kellner, R., Kubicek, M., Lottspeich, F., Maser, E., Mewes, H.-.W., Meyer, H. E., Müllner, S., Mutter, W., Neumaier, M., Nollau, P., Nothwang, H. G., Ponten, F., Radbruch, A., … Schmitz, G. (2009). Approaching clinical proteomics: Current state and future fields of application in fluid proteomics. Clinical Chemistry and Laboratory Medicine, 47(6), 724-744.
Ho, Y.-P., & Reddy, P. M. (2010). Identification of pathogens by mass spectrometry. Clinical Chemistry, 56(4), 525-536.
Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. Journal of Molecular Evolution, 88(1), 26-40.
Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: Past, present, and future. Antimicrobial Agents and Chemotherapy, 55(11), 4943-4960.
Mmatli, M., Mbelle, N. M., Maningi, N. E., & Osei Sekyere, J. (2020). Emerging transcriptional and genomic mechanisms mediating carbapenem and polymyxin resistance in Enterobacteriaceae: A systematic review of current reports. mSystems, 5(6).
Nordmann, P., Naas, T., & Poirel, L. (2011). Global spread of Carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, 17(10), 1791-1798.
Van Duin, D., & Doi, Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence, 8(4), 460-469.
Islam, S. M., Aryasomayajula, A., & Selvaganapathy, P. R. J. M. (2017). A review on macroscale and microscale cell lysis methods. Micromachines (Basel), 8(3), 83.
Wöhlbrand, L., Trautwein, K., & Rabus, R. (2013). Proteomic tools for environmental microbiology-a roadmap from sample preparation to protein identification and quantification. Proteomics, 13(18-19), 2700-2730.
Mann, M., Hendrickson, R. C., & Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Annual Review of Biochemistry, 70, 437-473.
Loo, R. R., Dales, N., & Andrews, P. C. (1996). The effect of detergents on proteins analyzed by electrospray ionization. Methods in Molecular Biology, 61, 141-160.
Miller, S. I., & Salama, N. R. (2018). The gram-negative bacterial periplasm: Size matters. Plos Biology, 16(1), e2004935.
Duong, F., Eichler, J., Price, A., Rice Leonard, M., & Wickner, W. (1997). Biogenesis of the Gram-negative bacterial envelope. Cell, 91(5), 567-573.
Neu, H. C., & Heppel, L. A. (1965). The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. Journal of Biological Chemistry, 240(9), 3685-3692.
Nossal, N. G., & Heppel, L. A. (1966). The release of enzymes by osmotic shock from Escherichia coli in exponential phase. Journal of Biological Chemistry, 241(13), 3055-3062.
Heppel, L. A. (1967). Selective release of enzymes from bacteria. Science, 156(3781), 1451-1455.
Chen, Y.-C., Chen, L.-A., Chen, S.-J., Chang, M.-C., & Chen, T.-L. (2004). A modified osmotic shock for periplasmic release of a recombinant creatinase from Escherichia coli. Biochemical Engineering Journal, 19(3), 211-215.
Lopez-Campistrous, A., Semchuk, P., Burke, L., Palmer-Stone, T., Brokx, S. J., Broderick, G., Bottorff, D., Bolch, S., Weiner, J. H., & Ellison, M. J. (2005). Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth. Molecular and Cellular Proteomics, 4(8), 1205-1209.
Lasserre, J.-P., Beyne, E., Pyndiah, S., Lapaillerie, D., Claverol, S., & Bonneu, M. (2006). A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis. Electrophoresis, 27(16), 3306-3321.
Heppel, L. A. (1969). The effect of osmotic shock on release of bacterial proteins and on active transport. Journal of General Physiology, 54(1), 95-113.
Pandeya, A., Ojo, I., Alegun, O., & Wei, Y. (2020). Periplasmic targets for the development of effective antimicrobials against Gram-negative bacteria. ACS Infectious Diseases, 6(9), 2337-2354.
Koebnik, R., Locher, K. P., & Van Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Molecular Microbiology, 37(2), 239-253
Hrabak, J., Studentova, V., Walkova, R., Zemlickova, H., Jakubu, V., Chudackova, E., Gniadkowski, M., Pfeifer, Y., Perry, J. D., Wilkinson, K., & Bergerova, T. (2012). Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 50(7), 2441-2443.
Burckhardt, I., & Zimmermann, S. (2011). Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. Journal of Clinical Microbiology, 49(9), 3321-3324.
Lau, A. F., Wang, H., Weingarten, R. A., Drake, S. K., Suffredini, A. F., Garfield, M. K., Chen, Y., Gucek, M., Youn, J. - H., Stock, F., Tso, H., Deleo, J., Cimino, J. J., Frank, K. M., & Dekker, J. P. (2014). A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. Journal of Clinical Microbiology, 52(8), 2804-2812.
Centonze, A. R., Bertoncelli, A., Savio, C., Orza, P., Bedenić, B., & Mazzariol, A. (2018). Evaluation of rapid KPC carbapenemase detection method based on MALDI-TOF VITEK MS spectra analysis. Journal of Medical Microbiology, 67(10), 1474-1479.
Wang, H., Drake, S. K., Youn, J. H., Rosenberg, A. Z., Chen, Y., Gucek, M., Suffredini, A. F., & Dekker, J. P. (2017). Peptide markers for rapid detection of KPC Carbapenemase by LC-MS/MS. Science Reports, 7(1), 2531.
Yoon, E.-J., Lee, E. H., Hwang, D. H., Lee, H., Baek, J.e-H., & Jeong, S. H. (2020). Direct detection of intact Klebsiella pneumoniae Carbapenemases produced by Enterobacterales using MALDI-TOF MS. Journal of Antimicrobial Chemotherapy, 75(5), 1174-1181.
Tubaon, R. M., Haddad, P. R., & Quirino, J. P. (2017). Sample clean-up strategies for ESI mass spectrometry applications in bottom-up proteomics: Trends from 2012 to 2016. Proteomics, 17(20).
Tran, J. C., Zamdborg, L., Ahlf, D. R., Lee, J.i E., Catherman, A. D., Durbin, K. R., Tipton, J. D., Vellaichamy, A., Kellie, J. F., Li, M., Wu, C., Sweet, S. M. M., Early, B. P., Siuti, N., Leduc, R. D., Compton, P. D., Thomas, P. M., & Kelleher, N. L. (2011). Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature, 480(7376), 254-258.

Auteurs

Dong Huey Cheon (DH)

R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul, Korea.

Saeyoung Lee (S)

R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul, Korea.

Won Suk Yang (WS)

R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul, Korea.

Seohyun Hwang (S)

R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul, Korea.

Heejung Jang (H)

R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul, Korea.

Min Jin Kim (MJ)

Department of Laboratory Medicine, Seegene Medical Foundation, Seongdong-gu, Seoul, Korea.

Je-Hyun Baek (JH)

R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul, Korea.

Articles similaires

Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Female Biofilms Animals Lactobacillus Mice

Classifications MeSH