Efficient integration of transmembrane domains depends on the folding properties of the upstream sequences.


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
17 08 2021
Historique:
entrez: 10 8 2021
pubmed: 11 8 2021
medline: 15 12 2021
Statut: ppublish

Résumé

The topology of most membrane proteins is defined by the successive integration of α-helical transmembrane domains at the Sec61 translocon. The translocon provides a pore for the transfer of polypeptide segments across the membrane while giving them lateral access to the lipid. For each polypeptide segment of ∼20 residues, the combined hydrophobicities of its constituent amino acids were previously shown to define the extent of membrane integration. Here, we discovered that different sequences preceding a potential transmembrane domain substantially affect its hydrophobicity requirement for integration. Rapidly folding domains, sequences that are intrinsically disordered or very short or capable of binding chaperones with high affinity, allow for efficient transmembrane integration with low-hydrophobicity thresholds for both orientations in the membrane. In contrast, long protein fragments, folding-deficient mutant domains, and artificial sequences not binding chaperones interfered with membrane integration, requiring higher hydrophobicity. We propose that the latter sequences, as they compact on their hydrophobic residues, partially folded but unable to reach a native state, expose hydrophobic surfaces that compete with the translocon for the emerging transmembrane segment, reducing integration efficiency. The results suggest that rapid folding or strong chaperone binding is required for efficient transmembrane integration.

Identifiants

pubmed: 34373330
pii: 2102675118
doi: 10.1073/pnas.2102675118
pmc: PMC8379923
pii:
doi:

Substances chimiques

Molecular Chaperones 0
Saccharomyces cerevisiae Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Commentaires et corrections

Type : CommentIn

Informations de copyright

Copyright   2021 the Author(s). Published by PNAS.

Déclaration de conflit d'intérêts

The authors declare no competing interest.

Références

Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18856-61
pubmed: 24191046
J Mol Biol. 2009 Mar 13;386(5):1222-8
pubmed: 19452628
Cell Rep. 2015 Sep 8;12(10):1533-40
pubmed: 26321634
Cell. 1999 May 28;97(5):553-64
pubmed: 10367885
J Mol Biol. 2015 Apr 10;427(7):1575-88
pubmed: 25683596
Nature. 2014 Feb 6;506(7486):107-10
pubmed: 24499919
J Mol Biol. 2015 Mar 13;427(5):999-1022
pubmed: 25277655
Science. 2016 Jul 1;353(6294):aac4354
pubmed: 27365453
J Cell Sci. 2017 Jan 15;130(2):372-381
pubmed: 27909247
Nature. 2007 Dec 13;450(7172):1026-30
pubmed: 18075582
Nature. 2005 Jan 27;433(7024):377-81
pubmed: 15674282
Nat Rev Mol Cell Biol. 2019 Nov;20(11):665-680
pubmed: 31253954
Science. 2016 Jan 1;351(6268):88-91
pubmed: 26721998
Cell. 1991 Feb 22;64(4):777-87
pubmed: 1997206
Nucleic Acids Res. 2015 Jul 1;43(W1):W401-7
pubmed: 25969446
Mol Cell. 2012 Feb 24;45(4):529-40
pubmed: 22281052
J Biol Chem. 1991 Jan 15;266(2):973-8
pubmed: 1985975
Nature. 2011 Jul 20;475(7356):324-32
pubmed: 21776078
J Mol Biol. 2013 Aug 9;425(15):2813-22
pubmed: 23659793
EMBO J. 2011 Mar 16;30(6):1003-11
pubmed: 21326212
J Membr Biol. 1990 May;115(3):195-201
pubmed: 2197415
Biochim Biophys Acta. 2013 Dec;1833(12):3104-3111
pubmed: 24013069
J Mol Biol. 2010 Feb 12;396(1):221-9
pubmed: 19931281
Mol Cell Proteomics. 2010 Oct;9(10):2205-24
pubmed: 20368288
Nat Struct Mol Biol. 2014 Mar;21(3):228-35
pubmed: 24561504
EMBO J. 2002 Jul 15;21(14):3659-71
pubmed: 12110579
Biochemistry. 2007 Dec 25;46(51):15153-61
pubmed: 18052199
EMBO J. 1995 Dec 15;14(24):6311-7
pubmed: 8557050
Annu Rev Biophys Biomol Struct. 1995;24:495-522
pubmed: 7663125
J Biol Chem. 1996 Mar 15;271(11):6423-8
pubmed: 8626442
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15702-7
pubmed: 18840693
Protein J. 2019 Jun;38(3):306-316
pubmed: 30927129
Elife. 2020 Oct 27;9:
pubmed: 33112737
Nat Struct Mol Biol. 2017 Mar;24(3):221-225
pubmed: 28112730
Cell. 2014 Jun 19;157(7):1632-43
pubmed: 24930395
Cell. 1993 Nov 19;75(4):717-28
pubmed: 7902213
Annu Rev Biochem. 2019 Jun 20;88:337-364
pubmed: 30508494
Mol Biol Cell. 2010 May 15;21(10):1662-70
pubmed: 20357000
EMBO J. 1997 Apr 1;16(7):1501-7
pubmed: 9130695
J Mol Biol. 2014 Jan 9;426(1):185-98
pubmed: 24055377
EMBO J. 1997 Aug 1;16(15):4540-8
pubmed: 9303298
J Biol Chem. 2017 Dec 29;292(52):21383-21396
pubmed: 29084847
Annu Rev Cell Dev Biol. 2017 Oct 6;33:369-390
pubmed: 28564553

Auteurs

Marco Janoschke (M)

Biozentrum, University of Basel, 4056 Basel, Switzerland.

Mirjam Zimmermann (M)

Biozentrum, University of Basel, 4056 Basel, Switzerland.
Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria.

Anna Brunauer (A)

Biozentrum, University of Basel, 4056 Basel, Switzerland.

Raffael Humbel (R)

Biozentrum, University of Basel, 4056 Basel, Switzerland.

Tina Junne (T)

Biozentrum, University of Basel, 4056 Basel, Switzerland.

Martin Spiess (M)

Biozentrum, University of Basel, 4056 Basel, Switzerland; martin.spiess@unibas.ch.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

Classifications MeSH